PW_C000001
HMDB0000001:
View Metabocard
|
1-Methylhistidine
One-methylhistidine (1-MHis) is derived mainly from the anserine of dietary flesh sources, especially poultry. The enzyme, carnosinase, splits anserine into b-alanine and 1-MHis. High levels of 1-MHis tend to inhibit the enzyme carnosinase and increase anserine levels. Conversely, genetic variants with deficient carnosinase activity in plasma show increased 1-MHis excretions when they consume a high meat diet. Reduced serum carnosinase activity is also found in patients with Parkinson's disease and multiple sclerosis and patients following a cerebrovascular accident. Vitamin E deficiency can lead to 1-methylhistidinuria from increased oxidative effects in skeletal muscle.
|
Drug Metabolism Drug Action
|
|
PW_C000002
HMDB0000002:
View Metabocard
|
1,3-Diaminopropane
1,3-Diaminopropane is a stable, flammable and highly hydroscopic fluid. It is a polyamine that is normally quite toxic if swallowed, inhaled or absorbed through the skin. It is a catabolic byproduct of spermidine. It is also a precursor in the enzymatic synthesis of beta-alanine. 1, 3-Diaminopropane is involved in the arginine/proline metabolic pathways and the beta-alanine metabolic pathway.
|
Metabolic
|
|
PW_C000003
HMDB0000005:
View Metabocard
|
2-Ketobutyric acid
2-Ketobutyric acid is a substance that is involved in the metabolism of many amino acids (glycine, methionine, valine, leucine, serine, threonine, isoleucine) as well as propanoate metabolism and C-5 branched dibasic acid metabolism. More specifically, alpha-ketobutyric acid is a product of the lysis of cystathionine. It is also one of the degradation products of threonine. It can be converted into propionyl-CoA (and subsequently methylmalonyl CoA, which can be converted into succinyl CoA, a citric acid cycle intermediate), and thus enter the citric acid cycle.
|
Drug Metabolism Drug Action
|
- 3-Phosphoglycerate Dehydrogenase Deficiency (Homo sapiens)
- 3-Phosphoglycerate Dehydrogenase Deficiency (Mus musculus)
- 3-Phosphoglycerate Dehydrogenase Deficiency (Rattus norvegicus)
- 3-Phosphoglycerate Dehydrogenase Deficiency (Homo sapiens)
- C5-Branched Dibasic Acid Metabolism (Arabidopsis thaliana)
- Cystathionine beta-Synthase Deficiency (Homo sapiens)
- Cystathionine beta-Synthase Deficiency (Mus musculus)
- Cystathionine beta-Synthase Deficiency (Rattus norvegicus)
- Cystathionine beta-Synthase Deficiency (Homo sapiens)
- Cysteine Metabolism (Saccharomyces cerevisiae)
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD) (Homo sapiens)
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD) (Mus musculus)
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD) (Rattus norvegicus)
- Dimethylglycine Dehydrogenase Deficiency (Homo sapiens)
- Dimethylglycine Dehydrogenase Deficiency (Homo sapiens)
- Dimethylglycine Dehydrogenase Deficiency (Mus musculus)
- Dimethylglycine Dehydrogenase Deficiency (Rattus norvegicus)
- Dimethylglycine Dehydrogenase Deficiency (Homo sapiens)
- gamma-Cystathionase Deficiency (CTH) (Homo sapiens)
- gamma-Cystathionase Deficiency (CTH) (Mus musculus)
- gamma-Cystathionase Deficiency (CTH) (Rattus norvegicus)
- gamma-Cystathionase Deficiency (CTH) (Homo sapiens)
- Glycine and Serine Metabolism (Homo sapiens)
- Glycine and Serine Metabolism (Mus musculus)
- Glycine and Serine Metabolism (Bos taurus)
- Glycine and Serine Metabolism (Rattus norvegicus)
- Glycine and Serine Metabolism (Drosophila melanogaster)
- Glycine and Serine Metabolism (Caenorhabditis elegans)
- Glycine and Serine Metabolism (Mus musculus)
- Glycine N-Methyltransferase Deficiency (Homo sapiens)
- Glycine N-Methyltransferase Deficiency (Mus musculus)
- Glycine N-Methyltransferase Deficiency (Rattus norvegicus)
- Glycine N-Methyltransferase Deficiency (Homo sapiens)
- Homocysteine Degradation (Homo sapiens)
- Homocysteine Degradation (Mus musculus)
- Homocysteine Degradation (Bos taurus)
- Homocysteine Degradation (Rattus norvegicus)
- Homocysteine Degradation (Drosophila melanogaster)
- Homocysteine Degradation (Caenorhabditis elegans)
- Homocystinuria, Cystathionine beta-Synthase Deficiency (Homo sapiens)
- Homocystinuria, Cystathionine beta-Synthase Deficiency (Mus musculus)
- Homocystinuria, Cystathionine beta-Synthase Deficiency (Rattus norvegicus)
- Homocystinuria, Cystathionine beta-Synthase Deficiency (Homo sapiens)
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type (Homo sapiens)
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type (Mus musculus)
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type (Rattus norvegicus)
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type (Homo sapiens)
- Hyperglycinemia, Non-Ketotic (Homo sapiens)
- Hyperglycinemia, Non-Ketotic (Mus musculus)
- Hyperglycinemia, Non-Ketotic (Rattus norvegicus)
- Hypermethioninemia (Homo sapiens)
- Hypermethioninemia (Mus musculus)
- Hypermethioninemia (Rattus norvegicus)
- Hypermethioninemia (Homo sapiens)
- Isoleucine Biosynthesis (Escherichia coli)
- Isoleucine Biosynthesis (Saccharomyces cerevisiae)
- Isoleucine Biosynthesis (Arabidopsis thaliana)
- Isoleucine Biosynthesis (Pseudomonas aeruginosa)
- Malonic Aciduria (Mus musculus)
- Malonic Aciduria (Rattus norvegicus)
- Malonic Aciduria (Homo sapiens)
- Malonic Aciduria (Homo sapiens)
- Malonyl-CoA Decarboxylase Deficiency (Mus musculus)
- Malonyl-CoA Decarboxylase Deficiency (Rattus norvegicus)
- Malonyl-CoA Decarboxylase Deficiency (Homo sapiens)
- Malonyl-CoA Decarboxylase Deficiency (Homo sapiens)
- Methionine Adenosyltransferase Deficiency (Homo sapiens)
- Methionine Adenosyltransferase Deficiency (Mus musculus)
- Methionine Adenosyltransferase Deficiency (Rattus norvegicus)
- Methionine Adenosyltransferase Deficiency (Homo sapiens)
- Methionine Metabolism (Homo sapiens)
- Methionine Metabolism (Arabidopsis thaliana)
- Methionine Metabolism (Mus musculus)
- Methionine Metabolism (Bos taurus)
- Methionine Metabolism (Rattus norvegicus)
- Methionine Metabolism (Drosophila melanogaster)
- Methionine Metabolism (Caenorhabditis elegans)
- Methionine Metabolism and Salvage (Saccharomyces cerevisiae)
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD) (Homo sapiens)
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD) (Homo sapiens)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Mus musculus)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Rattus norvegicus)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Homo sapiens)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Homo sapiens)
- Non-Ketotic Hyperglycinemia (Homo sapiens)
- Non-Ketotic Hyperglycinemia (Mus musculus)
- Non-Ketotic Hyperglycinemia (Rattus norvegicus)
- Non-Ketotic Hyperglycinemia (Homo sapiens)
- Propanoate Metabolism (Escherichia coli)
- Propanoate Metabolism (Mus musculus)
- Propanoate Metabolism (Bos taurus)
- Propanoate Metabolism (Rattus norvegicus)
- Propanoate Metabolism (Drosophila melanogaster)
- Propanoate Metabolism (Caenorhabditis elegans)
- Propanoate Metabolism (Pseudomonas aeruginosa)
- Propanoate Metabolism (Homo sapiens)
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency (Homo sapiens)
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency (Mus musculus)
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency (Rattus norvegicus)
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency (Homo sapiens)
- Sarcosinemia (Homo sapiens)
- Sarcosinemia (Mus musculus)
- Sarcosinemia (Rattus norvegicus)
- Sarcosinemia (Homo sapiens)
- Selenoamino Acid Metabolism (Homo sapiens)
- Selenoamino Acid Metabolism (Mus musculus)
- Selenoamino Acid Metabolism (Bos taurus)
- Selenoamino Acid Metabolism (Rattus norvegicus)
- Selenoamino Acid Metabolism (Drosophila melanogaster)
- Selenoamino Acid Metabolism (Caenorhabditis elegans)
- Selenocompound Metabolism (Saccharomyces cerevisiae)
- Selenocompound Metabolism (Drosophila melanogaster)
- Selenocompound Metabolism (Xenopus laevis)
- Selenocompound Metabolism (Danio rerio)
- Selenocompound Metabolism (Arabidopsis thaliana)
- Sulfur Metabolism (Saccharomyces cerevisiae)
- Threonine and 2-Oxobutanoate Degradation (Homo sapiens)
- Threonine and 2-Oxobutanoate Degradation (Mus musculus)
- Threonine and 2-Oxobutanoate Degradation (Bos taurus)
- Threonine and 2-Oxobutanoate Degradation (Rattus norvegicus)
- Threonine and 2-Oxobutanoate Degradation (Drosophila melanogaster)
- Threonine and 2-Oxobutanoate Degradation (Caenorhabditis elegans)
- Threonine Metabolism (Arabidopsis thaliana)
- (
show more
show less
)
|
PW_C000004
HMDB0000008:
View Metabocard
|
2-Hydroxybutyric acid
2-Hydroxybutyric acid (alpha-hydroxybutyrate) is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized to propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a by-product of the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). 2-Hydroxybutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970's that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632).
|
Drug Metabolism Drug Action
|
|
PW_C000005
HMDB0000010:
View Metabocard
|
2-Methoxyestrone
2-Methoxyestrone is a steroid derivative that is a byproduct of estrone and 2-hydroxyestrone metabolism. It is part of the androgen and estrogen metabolic pathway. The acid ionization constant (pKa) of 2-methoxyestrone is 10.81 (PMID: 516114). 2-Methoxyestrone can be metabolized to a sulfated derivative (2-methoxyestrone 3-sulfate) via steroid sulfotransferase (EC 2.8.2.15). It can also be glucuronidated to 2-methoxyestrone 3-glucuronide by UDP glucuronosyltransferase (EC 2.4.1.17).
|
Metabolic
|
|
PW_C000006
HMDB0000011:
View Metabocard
|
(R)-3-Hydroxybutyric acid
(R)-3-Hydroxybutyric acid is a butyric acid substituted with a hydroxyl group in the beta or 3 position. 3-hydroxybutyric acid, or beta-hydroxybutyrate, is involved in the synthesis and degradation of ketone bodies. Like the other ketone bodies (acetoacetate and acetone), levels of beta-hydroxybutyrate are raised in the blood and urine in ketosis. Beta-hydroxybutyrate is a typical partial-degradation product of branched-chain amino acids (primarily valine) released from muscle for hepatic and renal gluconeogenesis This acid is metabolized by 3-hydroxybutyrate dehydrogenase (catalyzes the oxidation of D-3-hydroxybutyrate to form acetoacetate, using NAD+ as an electron acceptor). The enzyme functions in nervous tissues and muscles, enabling the use of circulating hydroxybutyrate as a fuel. In the liver mitochondrial matrix, the enzyme can also catalyze the reverse reaction, a step in ketogenesis. 3-Hydroxybutyric acid is a chiral compound having two enantiomers, D-3-hydroxybutyric acid and L-3-hydroxybutyric acid. In humans, beta-hydroxybutyrate is synthesized in the liver from acetyl-CoA, and can be used as an energy source by the brain when blood glucose is low. It can also be used for the synthesis of biodegradable plastics (Wikipedia).
|
Metabolic
|
|
PW_C000007
HMDB0000012:
View Metabocard
|
Deoxyuridine
2'-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2'-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies.
|
Metabolic
|
|
PW_C000008
HMDB0000014:
View Metabocard
|
Deoxycytidine
One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid).
|
Metabolic
|
|
PW_C000009
HMDB0000015:
View Metabocard
|
Cortexolone
Cortexolone is the precursor of cortisol. Accumulation of cortexolone can happen in a defect known as congenital adrenal hyperplasia, which is due to 11-beta-hydroxylase deficiency, resulting in androgen excess, virilization, and hypertension (PMID: 2022736). Cortexolone is a 17-hydroxycorticosteroid with glucocorticoid and anti-inflammatory activities (PubChem).
|
Metabolic
|
|
PW_C000010
HMDB0000016:
View Metabocard
|
Deoxycorticosterone
11-Deoxycorticosterone (also called desoxycortone, 21-hydroxyprogesterone, DOC, or simply deoxycorticosterone) is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is classified as a member of the 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Deoxycorticosterone is very hydrophobic, practically insoluble (in water), and relatively neutral. Deoxycorticosterone can be synthesized from progesterone by 21-beta-hydroxylase and is then converted to corticosterone by 11-beta-hydroxylase. Corticosterone is then converted to aldosterone by aldosterone synthase. Deoxycorticosterone stimulates the collecting tubules in the kidney to continue to excrete potassium in much the same way that aldosterone does. Deoxycorticosterone has about 1/20 of the sodium retaining power of aldosterone and about 1/5 the potassium excreting power of aldosterone (Wikipedia). Deoxycorticosterone can be found throughout all human tissues and has been detected in amniotic fluid and blood. When present in sufficiently high levels, deoxycorticosterone can act as a hypertensive agent and a metabotoxin. A hypertensive agent increases blood pressure and causes the production of more urine. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxycorticosterone are associated with congenital adrenal hyperplasia (CAH) and with adrenal tumors producing deoxycorticosterone (PMID: 20671982). High levels of this mineralocorticoid are associated with resistant hypertension, which can result in polyuria, polydipsia, increased blood volume, edema, and cardiac enlargement. Deoxycorticosterone can be used to treat adrenal insufficiency. In particular, desoxycorticosterone acetate (DOCA) is used as replacement therapy in Addison's disease.
|
Metabolic
|
|
PW_C000011
HMDB0000017:
View Metabocard
|
4-Pyridoxic acid
4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor.
|
Metabolic
|
|
PW_C000012
HMDB0000019:
View Metabocard
|
α-Ketoisovaleric acid
alpha-Ketoisovaleric acid is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. alpha-Ketoisovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of alpha-ketoisovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). alpha-Ketoisovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development.
|
Drug Metabolism Drug Action
|
|
PW_C000013
HMDB0000020:
View Metabocard
|
p-Hydroxyphenylacetic acid
p-Hydroxyphenylacetic acid is an oxidative deaminated metabolite of p-tyramine. Also a metabolite of tyrosine via enteric bacteria. The bacterial origin of this compound was confirmed by the finding that this compound in urine decreased significantly after the use of the antibiotic neomycin.
|
Metabolic
|
|
PW_C000014
HMDB0000021:
View Metabocard
|
Iodotyrosine
Iodotyrosine is an iodated derivative of L-tyrosine. This is an early precursor to L-thyroxine, one of the primary thyroid hormones. In the thyroid gland, iodide is trapped, transported, and concentrated in the follicular lumen for thyroid hormone synthesis. Before trapped iodide can react with tyrosine residues, it must be oxidized by thyroid peroxidase. Iodotyrosine is made from tyrosine via thyroid peroxidase and then further iodinated by this enzyme to make the di-iodo and tri-iodo variants. Two molecules of di-iodotyrosine combine to form T4, and one molecule of mono-iodotyrosine combines with one molecule of di-iodotyrosine to form T3.
|
Drug Metabolism Drug Action
|
|
PW_C000015
HMDB0000022:
View Metabocard
|
3-Methoxytyramine
The O-methylated derivative of dopamine. Dopamine is methylated by catechol-O-methyltransferase (COMT) to make 3-Methoxytyramine. This compound can be broken down to homovanillic acid by monoamine oxidase and aldehyde dehydrogenase. Elevated concentrations of this compound are indicated for a variety of brain and carcinoid tumors as well as certain mental disorders.
|
Metabolic
|
|
PW_C000016
HMDB0000023:
View Metabocard
|
(S)-3-Hydroxyisobutyric acid
(S)-3-Hydroxyisobutyric (3-HIBA) acid is an organic acid. 3-HIBA is an intermediate in L-valine metabolism. 3-HIBA plays an important role in the diagnosis of the very rare inherited metabolic diseases 3-hydroxyisobutyric aciduria (OMIM 236795) and methylmalonic semialdehyde dehydrogenase deficiency (OMIM 603178). Patients with 3-hydroxyisobutyric aciduria excrete a significant amount of 3-HIBA not only during the acute stage but also when stable. 3-hydroxyisobutyric aciduria is caused by a 3-hydroxyisobutyryl-CoA dehydrogenase deficiency (PMID: 18329219). The severity of this disease varies from case to case. Most patients exhibit dysmorphic features, such as a small triangular face, a long philtrum, low set ears and micrognathia (PMID: 113770040, 10686279). Lactic acidemia is also found in the affected patients, indicating that mitochondrial dysfunction is involved. 3-hydroxyisobutyrate appears to specifically inhibit the function of the respiratory chain complex I-III and mitochondrial creatine kinase (PMID: 18329219).
|
Metabolic
|
|
PW_C000017
HMDB0000024:
View Metabocard
|
3-O-Sulfogalactosylceramide (d18:1/24:0)
3-O-Sulfogalactosylceramide is an acidic, sulfated glycosphingolipid, often known as sulfatide. This lipid occurs in membranes of various cell types, but is found in particularly high concentrations in myelin where it constitutes 3-4% of total membrane lipids. This lipid is synthesized primarily in the oligodendrocytes in the central nervous system. Accumulation of this lipid in the lysosomes is a characteristic of metachromatic leukodystrophy, a lysosomal storage disease caused by the deficiency of arylsulfatase A. Alterations in sulfatide metabolism, trafficking, and homeostasis are present in the earliest clinically recognizable stages of Alzheimer's disease. Cerebrosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Cerebrosides have a single sugar group linked to ceramide. The most common are galactocerebrosides (containing galactose), the least common are glucocerebrosides (containing glucose). Galactocerebrosides are found predominantly in neuronal cell membranes. In contrast glucocerebrosides are not normally found in membranes. Instead, they are typically intermediates in the synthesis or degradation of more complex glycosphingolipids. Galactocerebrosides are synthesized from ceramide and UDP-galactose. Excess lysosomal accumulation of glucocerebrosides is found in Gaucher disease. Sulfatides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Sulfatides are the sulfuric acid esters of galactocerebrosides. They are synthesized from galactocerebrosides and activated sulfate, 3'-phosphoadenosine 5'-phosphosulfate (PAPS).
|
Lipid
|
|
PW_C000018
HMDB0000026:
View Metabocard
|
Ureidopropionic acid
Ureidopropionic acid is an intermediate in the metabolism of uracil. More specifically it is a breakdown product of dihydrouracil and is produced by the enzyme dihydropyrimidase. It is further decomposed to beta-alanine via the enzyme beta-ureidopropionase. Ureidopropionic acid is essentially a urea derivative of beta-alanine. High levels of Ureidopropionic acid are found in individuals with beta-ureidopropionase (UP) deficiency [PMID: 11675655]. Enzyme deficiencies in pyrimidine metabolism are associated with a risk for severe toxicity against the antineoplastic agent 5-fluorouracil.
|
Metabolic
|
|
PW_C000019
HMDB0000027:
View Metabocard
|
Tetrahydrobiopterin
Tetrahydrobiopterin or BH4 is a cofactor in the synthesis of nitric oxide. In fact it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine to tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine to L-dopa by the enzyme tyrosine hydroxylase; and conversion of tryptophan to 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline and adrenaline. Tetrahydrobiopterin has been proposed to be involved in promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinson's disease, Alzheimer's disease and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin. -- Wikipedia.
|
Drug Metabolism Drug Action
|
- Dolasetron Serotonin antagonist Action Pathway (Homo sapiens)
- Dosulepin Serotonin antagonist Action Pathway (Homo sapiens)
- Acepromazine - Serotonin Antagonist Action Pathway (Homo sapiens)
- Acepromazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Aceprometazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Acrivastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Agomelatine Serotonin Antagonist Action Pathway (Homo sapiens)
- Alcaftadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Alimemazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Alkaptonuria (Homo sapiens)
- Alkaptonuria (Mus musculus)
- Alkaptonuria (Rattus norvegicus)
- Amine Oxidase Norepinephrine (Homo sapiens)
- Amine Oxidase Norepinephrine (Mus musculus)
- Amine Oxidase Norepinephrine (Rattus norvegicus)
- Amine Oxidase Norepinephrine (Bos taurus)
- Amine Oxidase Serotonin (Homo sapiens)
- Amine Oxidase Serotonin (Mus musculus)
- Amine Oxidase Serotonin (Rattus norvegicus)
- Amine Oxidase Serotonin (Bos taurus)
- Amisulpride Serotonin Antagonist Action Pathway (Homo sapiens)
- Amitriptyline Norepinephrine Reuptake Inhibitor Action Pathway (Homo sapiens)
- Amitriptyline Serotonin Antagonist Action Pathway (Homo sapiens)
- Amoxapine SSRI Action Pathway (Homo sapiens)
- Amphetamine Neurological Action Pathway (Homo sapiens)
- Antazoline H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Arginine and Proline Metabolism (Homo sapiens)
- Arginine and Proline Metabolism (Saccharomyces cerevisiae)
- Arginine and Proline Metabolism (Mus musculus)
- Arginine and Proline Metabolism (Bos taurus)
- Arginine and Proline Metabolism (Rattus norvegicus)
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency) (Homo sapiens)
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency) (Mus musculus)
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency) (Rattus norvegicus)
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency) (Homo sapiens)
- Aripiprazole Dopamine agonist Action Pathway (Homo sapiens)
- Aripiprazole lauroxil H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Aripiprazole Serotonin Agonist Action Pathway (Homo sapiens)
- Asenapine Serotonin antagonist Action Pathway (Homo sapiens)
- Astemizole H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Atomoxetine Action Pathway (New) (Homo sapiens)
- Azatadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Azelastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Bacterial Sepsis (Homo sapiens)
- Benzquinamide H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Bepotastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Bilastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Brexpiprazole Dopamine Agonist Action Pathway (Homo sapiens)
- Brexpiprazole Serotonin Action Action Pathway (Homo sapiens)
- Bromodiphenhydramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Bromopride Dopamine Antagonist Action Pathway (Homo sapiens)
- Brompheniramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Buclizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Butriptyline H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Caffeine Vasodilation Action Pathway (Homo sapiens)
- Carbinoxamine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Cariprazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Cariprazine Mechanism of Action Action Pathway (Homo sapiens)
- Cetirizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Chlorcyclizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Chloropyramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Chlorpheniramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Chlorpromazine - Dopamine Antagonist Action Pathway (Homo sapiens)
- Chlorpromazine - Serotonin Antagonist Action Pathway (Homo sapiens)
- Chlorpromazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Chlorprothixene Dopamine Antagonist Action Pathway (Homo sapiens)
- Chlorprothixene H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Chlorprothixene Serotonin Antagonist Action Pathway (Homo sapiens)
- Cinnarizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Citalopram Mechanism of Action Action Pathway New (Homo sapiens)
- Citrate Immunometabolism Pathway (Homo sapiens)
- Clemastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Clofedanol H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Clomipramine Action Pathway (New) (Homo sapiens)
- Clozapine Dopamine Antagonist Action Pathway (Homo sapiens)
- Clozapine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Clozapine Serotonin Antagonist Action Pathway (Homo sapiens)
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency (Homo sapiens)
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency (Mus musculus)
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency (Rattus norvegicus)
- Cyclizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Cyclobenzaprine Serotonin antagonist Action Pathway (Homo sapiens)
- Cyproheptadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Cyproheptadine Serotonin Antagonist Action Pathway (Homo sapiens)
- Deptropine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Desipramine Action Pathway (New) (Homo sapiens)
- Desloratadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Desvenlafaxine SNRI - Serotonin reuptake Inhibition Action Pathway (Homo sapiens)
- Dexbrompheniramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Dexchlorpheniramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Dexchlorpheniramine maleate H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Dimenhydrinate H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Dimetindene H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Dimetotiazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Diphenhydramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Diphenylpyraline H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Disulfiram Action Pathway (Homo sapiens)
- Domperidone Mechanism of Action Action Pathway (Homo sapiens)
- DOPA-Responsive Dystonia (Homo sapiens)
- DOPA-Responsive Dystonia (Mus musculus)
- DOPA-Responsive Dystonia (Rattus norvegicus)
- DOPA-Responsive Dystonia (Homo sapiens)
- Dopamine beta-Hydroxylase Deficiency (Homo sapiens)
- Dopamine beta-Hydroxylase Deficiency (Mus musculus)
- Dopamine beta-Hydroxylase Deficiency (Rattus norvegicus)
- Dopamine beta-Hydroxylase Deficiency (Homo sapiens)
- Doxepin H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Doxepin Norepinephrine Reuptake Inhibitor Action Pathway (New) (Homo sapiens)
- Doxorubicin Metabolism Pathway (Homo sapiens)
- Doxylamine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Droperidol Mechanism of Action Action Pathway (Homo sapiens)
- Duloxetine SNRI - Serotonin reuptake Inhibition Action Pathway (Homo sapiens)
- Ebastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Emedastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Epinastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Escitalopram Mechanism of Action Action Pathway New (Homo sapiens)
- Esmirtazapine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Fexofenadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Flibanserin Serotonin Action Action Pathway (Homo sapiens)
- Fluoxetine - Serotonin reuptake Inhibition Action Pathway (Homo sapiens)
- Flupentixol Dopamine Antagonist Action Pathway (Homo sapiens)
- Flupentixol Serotonin Antagonist Action Pathway (Homo sapiens)
- Fluphenazine Mechanism of Action Action Pathway (Homo sapiens)
- Fluspirilene Mechanism of Action Action Pathway (Homo sapiens)
- Fluvoxamine Mechanism of Action Action Pathway New (Homo sapiens)
- Granisetron Serotonin antagonist Action Pathway (Homo sapiens)
- GSK-1004723 H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency) (Homo sapiens)
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency) (Mus musculus)
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency) (Rattus norvegicus)
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency) (Homo sapiens)
- Haloperidol Dopamine Antagonist Action Pathway (Homo sapiens)
- Hawkinsinuria (Homo sapiens)
- Hawkinsinuria (Mus musculus)
- Hawkinsinuria (Rattus norvegicus)
- Hawkinsinuria (Homo sapiens)
- Histamine - H1 Dilation Pathway (Mus musculus)
- Histamine - H1 Dilation Pathway (Rattus norvegicus)
- Histamine - H1 Dilation Pathway (Bos taurus)
- Hydroxyzine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Hyperornithinemia with Gyrate Atrophy (HOGA) (Homo sapiens)
- Hyperornithinemia with Gyrate Atrophy (HOGA) (Mus musculus)
- Hyperornithinemia with Gyrate Atrophy (HOGA) (Rattus norvegicus)
- Hyperornithinemia with Gyrate Atrophy (HOGA) (Homo sapiens)
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH-syndrome) (Homo sapiens)
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH-syndrome) (Homo sapiens)
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome] (Mus musculus)
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome] (Rattus norvegicus)
- Hyperphenylalaninemia Due to 6-Pyruvoyltetrahydropterin Synthase Deficiency (ptps) (Homo sapiens)
- Hyperphenylalaninemia Due to 6-Pyruvoyltetrahydropterin Synthase Deficiency (ptps) (Mus musculus)
- Hyperphenylalaninemia Due to 6-Pyruvoyltetrahydropterin Synthase Deficiency (ptps) (Rattus norvegicus)
- Hyperphenylalaninemia Due to 6-Pyruvoyltetrahydropterin Synthase Deficiency (ptps) (Homo sapiens)
- Hyperphenylalaninemia Due to DHPR-Deficiency (Homo sapiens)
- Hyperphenylalaninemia Due to DHPR-Deficiency (Mus musculus)
- Hyperphenylalaninemia Due to DHPR-Deficiency (Rattus norvegicus)
- Hyperphenylalaninemia Due to DHPR-Deficiency (Homo sapiens)
- Hyperphenylalaninemia Due to Guanosine Triphosphate Cyclohydrolase Deficiency (Homo sapiens)
- Hyperphenylalaninemia Due to Guanosine Triphosphate Cyclohydrolase Deficiency (Mus musculus)
- Hyperphenylalaninemia Due to Guanosine Triphosphate Cyclohydrolase Deficiency (Rattus norvegicus)
- Hyperphenylalaninemia Due to Guanosine Triphosphate Cyclohydrolase Deficiency (Homo sapiens)
- Hyperprolinemia Type I (Homo sapiens)
- Hyperprolinemia Type I (Mus musculus)
- Hyperprolinemia Type I (Rattus norvegicus)
- Hyperprolinemia Type I (Homo sapiens)
- Hyperprolinemia Type II (Homo sapiens)
- Hyperprolinemia Type II (Mus musculus)
- Hyperprolinemia Type II (Rattus norvegicus)
- Hyperprolinemia Type II (Homo sapiens)
- Iloperidone Serotonin antagonist Action Pathway (Homo sapiens)
- Imipramine Action Pathway (New) (Homo sapiens)
- Immunometabolism Pathway (Bacterial Activation) (Homo sapiens)
- Immunometabolism Pathway (Viral Activation) (Homo sapiens)
- Ion Channels and Their Functional Role in Vascular Endothelium (Homo sapiens)
- Ion Channels and Their Functional Role in Vascular Endothelium (Mus musculus)
- Ion Channels and Their Functional Role in Vascular Endothelium (Bos taurus)
- Ion Channels and Their Functional Role in Vascular Endothelium (Rattus norvegicus)
- Isocarboxazid Amine Oxidase Norepinephrine Antidepressant Action Pathway (Homo sapiens)
- Isocarboxazid Amine Oxidase Serotonin Antidepressant Action Pathway (Homo sapiens)
- Isothipendyl H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Ketotifen H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- L-Arginine:Glycine Amidinotransferase Deficiency (Homo sapiens)
- L-Arginine:Glycine Amidinotransferase Deficiency (Mus musculus)
- L-Arginine:Glycine Amidinotransferase Deficiency (Rattus norvegicus)
- L-Arginine:Glycine Amidinotransferase Deficiency (Homo sapiens)
- Levocabastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Levocetirizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Levomilnacipran SNRI - Serotonin Reuptake Inhibition Action Pathway (Homo sapiens)
- Lisuride Dopamine Agonist Action Pathway (Homo sapiens)
- Loratadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Lorpiprazole Serotonin antagonist Action Pathway (Homo sapiens)
- Loxapine Dopamine Antagonist Action Pathway (Homo sapiens)
- Lumateperone Dopamine Action Action Pathway (Homo sapiens)
- Lumateperone Serotonin Antagonist Action Pathway (Homo sapiens)
- Lumateperone SSRI Action Action Pathway (Homo sapiens)
- Lurasidone Dopamine Antagonist Action Pathway (Homo sapiens)
- Lurasidone Serotonin Antagonist Action Pathway (Homo sapiens)
- Maprotiline Action Pathway (Homo sapiens)
- Meclizine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Mepyramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Mequitazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Mesoridazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Mesoridazine Serotonin Antagonist Action Pathway (Homo sapiens)
- Metabolism and Physiological Effects of O-Sulfotyrosine (Homo sapiens)
- Methamphetamine Dopamine Reuptake Inhibitor Action Pathway (Homo sapiens)
- Methamphetamine Serotonin Reuptake Inhibitor Action Pathway (Homo sapiens)
- Methapyrilene H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Methdilazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Methotrimeprazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Methyldopa Action Pathway (Homo sapiens)
- Methysergide Mechanism of Action Action Pathway (Homo sapiens)
- Metoclopramide - Dopamine Antagonist Action Pathway (Homo sapiens)
- Mianserin H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Milnacipran SNRI - Serotonin reuptake Inhibition Action Pathway (Homo sapiens)
- Minaprine Amine oxidase Norepinephrine Antidepressant Action Pathway (Homo sapiens)
- Minaprine Serotonin Antagonist Action Pathway (Homo sapiens)
- Minaprine Serotonin receptor Antidepressant Action Pathway (Homo sapiens)
- Mirtazapine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Mirtazapine Serotonin Antagonist Action Pathway (Homo sapiens)
- Mizolastine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Moclobemide Amine Oxidase B Serotonin Antidepressant Action Pathway (Homo sapiens)
- Moclobemide Amine Oxidase Norepinephrine Antidepressant Action Pathway (Homo sapiens)
- Modafinil Action Pathway (Homo sapiens)
- Monoamine Oxidase-A Deficiency (MAO-A) (Homo sapiens)
- Monoamine Oxidase-A Deficiency (MAO-A) (Mus musculus)
- Monoamine Oxidase-A Deficiency (MAO-A) (Rattus norvegicus)
- Monoamine Oxidase-A Deficiency (MAO-A) (Homo sapiens)
- Neuronal serotonin Gi protein cascade (Rattus norvegicus)
- Neuronal serotonin Gi protein cascade (Bos taurus)
- Neuronal serotonin Gi protein cascade (Mus musculus)
- Neuronal serotonin Gq protein cascade (Mus musculus)
- Neuronal serotonin Gq protein cascade (Rattus norvegicus)
- Neuronal serotonin Gq protein cascade (Bos taurus)
- Nitric Oxide Signaling Pathway (Homo sapiens)
- Nitric Oxide Signaling Pathway (Mus musculus)
- Nitric Oxide Signaling Pathway (Bos taurus)
- Nitric Oxide Signaling Pathway (Rattus norvegicus)
- Nortriptyline Action Pathway (Homo sapiens)
- Olanzapine Dopamine Antagonist Action Pathway (Homo sapiens)
- Olanzapine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Olanzapine Serotonin Antagonist Action Pathway (Homo sapiens)
- Olopatadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Ondansetron Serotonin antagonist Action Pathway (Homo sapiens)
- Ornithine Aminotransferase Deficiency (OAT Deficiency) (Homo sapiens)
- Ornithine Aminotransferase Deficiency (OAT Deficiency) (Mus musculus)
- Ornithine Aminotransferase Deficiency (OAT Deficiency) (Rattus norvegicus)
- Ornithine Aminotransferase Deficiency (OAT Deficiency) (Homo sapiens)
- Orphenadrine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Oxatomide H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Paliperidone Dopamine Antagonist Action Pathway (Homo sapiens)
- Paliperidone Serotonin Antagonist Action Pathway (Homo sapiens)
- Palonosetron Serotonin antagonist Action Pathway (Homo sapiens)
- Pargyline Action Pathway (Homo sapiens)
- Pargyline Amine Oxidase Serotonin Antidepressant Action Pathway (Homo sapiens)
- Paroxetine Mechanism of Action Action Pathway New (Homo sapiens)
- Perphenazine Mechanism of Action Action Pathway (Homo sapiens)
- Phenelzine Amine Oxidase Norepinephrine Antidepressant Action Pathway (Homo sapiens)
- Phenelzine Amine Oxidase Serotonin Antidepressant Action Pathway (Homo sapiens)
- Phenindamine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Pheniramine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Phentermine Action Pathway (Homo sapiens)
- Phentermine Norepinephrine Reuptake transporter Satiety Action Pathway (Homo sapiens)
- Phenylalanine and Tyrosine Biosynthesis (Xenopus laevis)
- Phenylalanine and Tyrosine Biosynthesis (Danio rerio)
- Phenylalanine Metabolism (Danio rerio)
- Pimozide Mechanism of Action Action Pathway (Homo sapiens)
- Pipotiazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Pipotiazine Serotonin antagonist Action Pathway (Homo sapiens)
- Prochlorperazine - Dopamine Antagonist Action Pathway (Homo sapiens)
- Prochlorperazine Mechanism of Action Action Pathway (Homo sapiens)
- Prolidase Deficiency (PD) (Homo sapiens)
- Prolidase Deficiency (PD) (Mus musculus)
- Prolidase Deficiency (PD) (Rattus norvegicus)
- Prolinemia Type II (Homo sapiens)
- Prolinemia Type II (Mus musculus)
- Prolinemia Type II (Rattus norvegicus)
- Prolinemia Type II (Homo sapiens)
- Promazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Promazine Mechanism of Action Action Pathway (Homo sapiens)
- Promethazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Propiomazine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Pterine Biosynthesis (Homo sapiens)
- Pterine Biosynthesis (Mus musculus)
- Pterine Biosynthesis (Bos taurus)
- Pterine Biosynthesis (Rattus norvegicus)
- Pterine Biosynthesis (Drosophila melanogaster)
- Pterine Biosynthesis (Caenorhabditis elegans)
- Quetiapine Dopamine Antagonist Action Pathway (Homo sapiens)
- Quetiapine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Quetiapine Serotonin Antagonist Action Pathway (Homo sapiens)
- Rasagiline Action Pathway (Homo sapiens)
- Remoxipride Mechanism of Action Action Pathway (Homo sapiens)
- Risperidone Dopamine Antagonist Action Pathway (Homo sapiens)
- Risperidone Serotonin Antagonist Action Pathway (Homo sapiens)
- Ropinirole Mechanism of Action Action Pathway (Homo sapiens)
- Rotigotine Dopamine Agonist Action Pathway (Homo sapiens)
- Rupatadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Safinamide Action Pathway (Homo sapiens)
- Segawa Syndrome (Homo sapiens)
- Segawa Syndrome (Mus musculus)
- Segawa Syndrome (Rattus norvegicus)
- Segawa Syndrome (Homo sapiens)
- Selegiline Action Pathway (Homo sapiens)
- Sepiapterin Reductase Deficiency (Homo sapiens)
- Sepiapterin Reductase Deficiency (Mus musculus)
- Sepiapterin Reductase Deficiency (Rattus norvegicus)
- Sepiapterin Reductase Deficiency (Homo sapiens)
- Sertraline Mechanism of Action Action Pathway New (Homo sapiens)
- Succinate Immunometabolism Pathway (Homo sapiens)
- Succinate Signalling During Inflammation (Homo sapiens)
- Succinate Signalling During Inflammation (Mus musculus)
- Succinate Signalling During Inflammation (Bos taurus)
- Succinate Signalling During Inflammation (Rattus norvegicus)
- Sulpiride Mechanism of Action Action Pathway (Homo sapiens)
- T Cell Exhaustion (Homo sapiens)
- Terfenadine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Thiethylperazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Thiethylperazine Serotonin Antagonist Action Pathway (Homo sapiens)
- Thioridazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Thioridazine Serotonin Antagonist Action Pathway (Homo sapiens)
- Thiothixene Dopamine Antagonist Action Pathway (Homo sapiens)
- Thonzylamine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Tiapride Dopamine Antagonist Action Pathway (Homo sapiens)
- Tiapride Serotonin Antagonist Action Pathway (Homo sapiens)
- Tranylcypromine Amine Oxidase Norepinephrine Antidepressant Action Pathway (Homo sapiens)
- Tranylcypromine Amine Oxidase Serotonin Antidepressant Action Pathway (Homo sapiens)
- Trazodone H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Trifluoperazine Dopamine Antagonist Action Pathway (Homo sapiens)
- Triflupromazine - Dopamine Antagonist Action Pathway (Homo sapiens)
- Triflupromazine Mechanism of Action Action Pathway (Homo sapiens)
- Triflupromazine Serotonin Antagonist Action Pathway (Homo sapiens)
- Trimipramine Action Pathway (Homo sapiens)
- Tripelennamine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Triprolidine H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Tropisetron Serotonin antagonist Action Pathway (Homo sapiens)
- Tryptophan Metabolism (Homo sapiens)
- Tryptophan Metabolism (Mus musculus)
- Tryptophan Metabolism (Bos taurus)
- Tryptophan Metabolism (Rattus norvegicus)
- Tryptophan Metabolism (Caenorhabditis elegans)
- Tyrosine Metabolism (Homo sapiens)
- Tyrosine Metabolism (Mus musculus)
- Tyrosine Metabolism (Bos taurus)
- Tyrosine Metabolism (Rattus norvegicus)
- Tyrosine Metabolism (Caenorhabditis elegans)
- Tyrosinemia Type I (Homo sapiens)
- Tyrosinemia Type I (Mus musculus)
- Tyrosinemia Type I (Rattus norvegicus)
- Tyrosinemia Type I (Homo sapiens)
- Tyrosinemia, Transient, of the Newborn (Homo sapiens)
- Tyrosinemia, Transient, of the Newborn (Mus musculus)
- Tyrosinemia, Transient, of the Newborn (Rattus norvegicus)
- Tyrosinemia, Transient, of the Newborn (Homo sapiens)
- Vilazodone mechanism of Action Action Pathway (Homo sapiens)
- Viral Sepsis (Homo sapiens)
- Vortioxetine Serotonin Action Action Pathway (Homo sapiens)
- Ziprasidone Dopamine Antagonist Action Pathway (Homo sapiens)
- Ziprasidone H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- Ziprasidone Serotonin Action Action Pathway (Homo sapiens)
- Zuclopenthixol Dopamine Antagonist Action Pathway (Homo sapiens)
- Zuclopenthixol H1-Antihistamine Blood Vessel Constriction Action Pathway (Homo sapiens)
- (
show more
show less
)
|
PW_C000020
HMDB0000030:
View Metabocard
|
Biotin
Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the 'biotin cycle'. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signaling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signaling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology. (PMID: 15992684, 16011464).
|
Drug Metabolism Drug Action
|
- 2-Hydroxyglutric Aciduria (D and L Form) (Homo sapiens)
- 2-Hydroxyglutric Aciduria (D and L Form) (Mus musculus)
- 2-Hydroxyglutric Aciduria (D and L Form) (Rattus norvegicus)
- 2-Ketoglutarate Dehydrogenase Complex Deficiency (Homo sapiens)
- 2-Ketoglutarate Dehydrogenase Complex Deficiency (Mus musculus)
- 2-Ketoglutarate Dehydrogenase Complex Deficiency (Rattus norvegicus)
- 2-Ketoglutarate Dehydrogenase Complex Deficiency (Homo sapiens)
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency (Mus musculus)
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency (Rattus norvegicus)
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency (Homo sapiens)
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency (Homo sapiens)
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency (Homo sapiens)
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency (Mus musculus)
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency (Rattus norvegicus)
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency (Homo sapiens)
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency (Homo sapiens)
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency (Mus musculus)
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency (Rattus norvegicus)
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency (Homo sapiens)
- 3-Hydroxyisobutyric Aciduria (Homo sapiens)
- 3-Hydroxyisobutyric Aciduria (Mus musculus)
- 3-Hydroxyisobutyric Aciduria (Rattus norvegicus)
- 3-Hydroxyisobutyric Aciduria (Homo sapiens)
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I (Homo sapiens)
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I (Mus musculus)
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I (Rattus norvegicus)
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I (Homo sapiens)
- 3-Methylglutaconic Aciduria Type I (Homo sapiens)
- 3-Methylglutaconic Aciduria Type I (Mus musculus)
- 3-Methylglutaconic Aciduria Type I (Rattus norvegicus)
- 3-Methylglutaconic Aciduria Type I (Homo sapiens)
- 3-Methylglutaconic Aciduria Type III (Homo sapiens)
- 3-Methylglutaconic Aciduria Type III (Mus musculus)
- 3-Methylglutaconic Aciduria Type III (Rattus norvegicus)
- 3-Methylglutaconic Aciduria Type III (Homo sapiens)
- 3-Methylglutaconic Aciduria Type IV (Homo sapiens)
- 3-Methylglutaconic Aciduria Type IV (Mus musculus)
- 3-Methylglutaconic Aciduria Type IV (Rattus norvegicus)
- 3-Methylglutaconic Aciduria Type IV (Homo sapiens)
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (Homo sapiens)
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (Mus musculus)
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (Rattus norvegicus)
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (Homo sapiens)
- Aerobic Glycolysis (Warburg Effect) (Homo sapiens)
- Alanine Metabolism (Homo sapiens)
- Alanine Metabolism (Mus musculus)
- Alanine Metabolism (Bos taurus)
- Alanine Metabolism (Rattus norvegicus)
- Alanine Metabolism (Drosophila melanogaster)
- Alanine Metabolism (Caenorhabditis elegans)
- Ammonia Recycling (Homo sapiens)
- Ammonia Recycling (Mus musculus)
- Ammonia Recycling (Bos taurus)
- Ammonia Recycling (Rattus norvegicus)
- Ammonia Recycling (Drosophila melanogaster)
- Ammonia Recycling (Caenorhabditis elegans)
- beta-Ketothiolase Deficiency (Homo sapiens)
- beta-Ketothiolase Deficiency (Mus musculus)
- beta-Ketothiolase Deficiency (Rattus norvegicus)
- beta-Ketothiolase Deficiency (Homo sapiens)
- Bezafibrate Action Pathway (New) (Homo sapiens)
- Biotin Drug Metabolism Action Pathway (Homo sapiens)
- Biotin Metabolism (Homo sapiens)
- Biotin Metabolism (Escherichia coli)
- Biotin Metabolism (Mus musculus)
- Biotin Metabolism (Bos taurus)
- Biotin Metabolism (Rattus norvegicus)
- Biotin Metabolism (Drosophila melanogaster)
- Biotin Metabolism (Pseudomonas aeruginosa)
- Biotin-Carboxyl Carrier Protein Assembly (Escherichia coli)
- Biotin-Carboxyl Carrier Protein Assembly (Pseudomonas aeruginosa)
- Biotinidase Deficiency (Homo sapiens)
- Biotinidase Deficiency (Mus musculus)
- Biotinidase Deficiency (Rattus norvegicus)
- Biotinidase Deficiency (Homo sapiens)
- Citrate Immunometabolism Pathway (Homo sapiens)
- Citric Acid Cycle (Homo sapiens)
- Citric Acid Cycle (Mus musculus)
- Citric Acid Cycle (Bos taurus)
- Citric Acid Cycle (Rattus norvegicus)
- Citric Acid Cycle (Drosophila melanogaster)
- Citric Acid Cycle (Caenorhabditis elegans)
- Congenital Lactic Acidosis (Homo sapiens)
- Congenital Lactic Acidosis (Mus musculus)
- Congenital Lactic Acidosis (Rattus norvegicus)
- Congenital Lactic Acidosis (Homo sapiens)
- Fatty Acid Biosynthesis (Homo sapiens)
- Fatty Acid Biosynthesis (Saccharomyces cerevisiae)
- Fatty Acid Biosynthesis (Mus musculus)
- Fatty Acid Biosynthesis (Bos taurus)
- Fatty Acid Biosynthesis (Rattus norvegicus)
- Fatty Acid Biosynthesis (Drosophila melanogaster)
- Fatty Acid Biosynthesis (Caenorhabditis elegans)
- Fenofibrate Action Pathway (Homo sapiens)
- Fructose-1,6-diphosphatase Deficiency (Homo sapiens)
- Fructose-1,6-diphosphatase Deficiency (Mus musculus)
- Fructose-1,6-diphosphatase Deficiency (Rattus norvegicus)
- Fructose-1,6-diphosphatase Deficiency (Homo sapiens)
- Fumarase Deficiency (Homo sapiens)
- Fumarase Deficiency (Mus musculus)
- Fumarase Deficiency (Rattus norvegicus)
- Fumarase Deficiency (Homo sapiens)
- Gemfibrozil Action Pathway (Homo sapiens)
- Gluconeogenesis (Homo sapiens)
- Gluconeogenesis (Mus musculus)
- Gluconeogenesis (Bos taurus)
- Gluconeogenesis (Rattus norvegicus)
- Glutamate Metabolism (Homo sapiens)
- Glutamate Metabolism (Mus musculus)
- Glutamate Metabolism (Bos taurus)
- Glutamate Metabolism (Rattus norvegicus)
- Glutamate Metabolism (Drosophila melanogaster)
- Glutamate Metabolism (Caenorhabditis elegans)
- Glutaminolysis and Cancer (Homo sapiens)
- Glutaminolysis and Cancer (Mus musculus)
- Glutaminolysis and Cancer (Rattus norvegicus)
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease (Homo sapiens)
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease (Mus musculus)
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease (Rattus norvegicus)
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease (Homo sapiens)
- Glycogenosis, Type IA. Von Gierke Disease (Homo sapiens)
- Glycogenosis, Type IA. Von Gierke Disease (Mus musculus)
- Glycogenosis, Type IA. Von Gierke Disease (Rattus norvegicus)
- Glycogenosis, Type IA. Von Gierke Disease (Homo sapiens)
- Glycogenosis, Type IB (Homo sapiens)
- Glycogenosis, Type IB (Mus musculus)
- Glycogenosis, Type IB (Rattus norvegicus)
- Glycogenosis, Type IB (Homo sapiens)
- Glycogenosis, Type IC (Homo sapiens)
- Glycogenosis, Type IC (Mus musculus)
- Glycogenosis, Type IC (Rattus norvegicus)
- Glycogenosis, Type IC (Homo sapiens)
- Homocarnosinosis (Homo sapiens)
- Homocarnosinosis (Mus musculus)
- Homocarnosinosis (Rattus norvegicus)
- Homocarnosinosis (Homo sapiens)
- Hyperinsulinism-Hyperammonemia Syndrome (Homo sapiens)
- Hyperinsulinism-Hyperammonemia Syndrome (Mus musculus)
- Hyperinsulinism-Hyperammonemia Syndrome (Rattus norvegicus)
- Hyperinsulinism-Hyperammonemia Syndrome (Homo sapiens)
- Isobutyryl-CoA Dehydrogenase Deficiency (Homo sapiens)
- Isobutyryl-CoA Dehydrogenase Deficiency (Mus musculus)
- Isobutyryl-CoA Dehydrogenase Deficiency (Rattus norvegicus)
- Isobutyryl-CoA Dehydrogenase Deficiency (Homo sapiens)
- Isovaleric Acidemia (Homo sapiens)
- Isovaleric Acidemia (Mus musculus)
- Isovaleric Acidemia (Rattus norvegicus)
- Isovaleric Acidemia (Homo sapiens)
- Isovaleric Aciduria (Homo sapiens)
- Isovaleric Aciduria (Mus musculus)
- Isovaleric Aciduria (Rattus norvegicus)
- Isovaleric Aciduria (Homo sapiens)
- Itaconate Immunometabolism Pathway (Homo sapiens)
- Lactic Acidemia (Homo sapiens)
- Lactic Acidemia (Mus musculus)
- Lactic Acidemia (Rattus norvegicus)
- Lactic Acidemia (Homo sapiens)
- Leigh Syndrome (Homo sapiens)
- Leigh Syndrome (Mus musculus)
- Leigh Syndrome (Rattus norvegicus)
- Leigh Syndrome (Homo sapiens)
- LPS and Citrate Signaling and Inflammation (Homo sapiens)
- LPS and Citrate Signaling and Inflammation (Mus musculus)
- LPS and Citrate Signaling and Inflammation (Bos taurus)
- LPS and Citrate Signaling and Inflammation (Rattus norvegicus)
- Malonic Aciduria (Mus musculus)
- Malonic Aciduria (Rattus norvegicus)
- Malonic Aciduria (Homo sapiens)
- Malonic Aciduria (Homo sapiens)
- Malonyl-CoA Decarboxylase Deficiency (Mus musculus)
- Malonyl-CoA Decarboxylase Deficiency (Rattus norvegicus)
- Malonyl-CoA Decarboxylase Deficiency (Homo sapiens)
- Malonyl-CoA Decarboxylase Deficiency (Homo sapiens)
- Maple Syrup Urine Disease (Homo sapiens)
- Maple Syrup Urine Disease (Mus musculus)
- Maple Syrup Urine Disease (Rattus norvegicus)
- Maple Syrup Urine Disease (Homo sapiens)
- Methylmalonate Semialdehyde Dehydrogenase Deficiency (Homo sapiens)
- Methylmalonate Semialdehyde Dehydrogenase Deficiency (Mus musculus)
- Methylmalonate Semialdehyde Dehydrogenase Deficiency (Rattus norvegicus)
- Methylmalonate Semialdehyde Dehydrogenase Deficiency (Homo sapiens)
- Methylmalonic Aciduria (Homo sapiens)
- Methylmalonic Aciduria (Mus musculus)
- Methylmalonic Aciduria (Rattus norvegicus)
- Methylmalonic Aciduria (Homo sapiens)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Mus musculus)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Rattus norvegicus)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Homo sapiens)
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders (Homo sapiens)
- Mitochondrial Complex II Deficiency (Homo sapiens)
- Mitochondrial Complex II Deficiency (Mus musculus)
- Mitochondrial Complex II Deficiency (Rattus norvegicus)
- Mitochondrial Complex II Deficiency (Homo sapiens)
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form (Homo sapiens)
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form (Mus musculus)
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form (Rattus norvegicus)
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form (Homo sapiens)
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1) (Homo sapiens)
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1) (Mus musculus)
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1) (Rattus norvegicus)
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1) (Homo sapiens)
- Primary Hyperoxaluria II, PH2 (Homo sapiens)
- Primary Hyperoxaluria II, PH2 (Mus musculus)
- Primary Hyperoxaluria II, PH2 (Rattus norvegicus)
- Primary Hyperoxaluria II, PH2 (Homo sapiens)
- Primary Hyperoxaluria Type I (Homo sapiens)
- Primary Hyperoxaluria Type I (Mus musculus)
- Primary Hyperoxaluria Type I (Rattus norvegicus)
- Primary Hyperoxaluria Type I (Homo sapiens)
- Propanoate Metabolism (Mus musculus)
- Propanoate Metabolism (Bos taurus)
- Propanoate Metabolism (Rattus norvegicus)
- Propanoate Metabolism (Drosophila melanogaster)
- Propanoate Metabolism (Caenorhabditis elegans)
- Propanoate Metabolism (Homo sapiens)
- Propionic Acidemia (Homo sapiens)
- Propionic Acidemia (Mus musculus)
- Propionic Acidemia (Rattus norvegicus)
- Propionic Acidemia (Homo sapiens)
- Pyruvate Carboxylase Deficiency (Homo sapiens)
- Pyruvate Carboxylase Deficiency (Mus musculus)
- Pyruvate Carboxylase Deficiency (Rattus norvegicus)
- Pyruvate Carboxylase Deficiency (Homo sapiens)
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency) (Homo sapiens)
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency) (Mus musculus)
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency) (Rattus norvegicus)
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency) (Homo sapiens)
- Pyruvate Dehydrogenase Complex Deficiency (Homo sapiens)
- Pyruvate Dehydrogenase Complex Deficiency (Mus musculus)
- Pyruvate Dehydrogenase Complex Deficiency (Rattus norvegicus)
- Pyruvate Dehydrogenase Complex Deficiency (Homo sapiens)
- Pyruvate Dehydrogenase Deficiency (E2) (Homo sapiens)
- Pyruvate Dehydrogenase Deficiency (E2) (Mus musculus)
- Pyruvate Dehydrogenase Deficiency (E2) (Rattus norvegicus)
- Pyruvate Dehydrogenase Deficiency (E2) (Homo sapiens)
- Pyruvate Dehydrogenase Deficiency (E3) (Homo sapiens)
- Pyruvate Dehydrogenase Deficiency (E3) (Mus musculus)
- Pyruvate Dehydrogenase Deficiency (E3) (Rattus norvegicus)
- Pyruvate Dehydrogenase Deficiency (E3) (Homo sapiens)
- Pyruvate Kinase Deficiency (Homo sapiens)
- Pyruvate Kinase Deficiency (Mus musculus)
- Pyruvate Kinase Deficiency (Rattus norvegicus)
- Pyruvate Kinase Deficiency (Homo sapiens)
- Pyruvate Metabolism (Homo sapiens)
- Pyruvate Metabolism (Mus musculus)
- Pyruvate Metabolism (Bos taurus)
- Pyruvate Metabolism (Rattus norvegicus)
- Pyruvate Metabolism (Drosophila melanogaster)
- Pyruvate Metabolism (Caenorhabditis elegans)
- Pyruvate Metabolism (Danio rerio)
- Succinate Immunometabolism Pathway (Homo sapiens)
- Succinic Semialdehyde Dehydrogenase Deficiency (Homo sapiens)
- Succinic Semialdehyde Dehydrogenase Deficiency (Mus musculus)
- Succinic Semialdehyde Dehydrogenase Deficiency (Rattus norvegicus)
- TCA Cycle (Saccharomyces cerevisiae)
- The Oncogenic Action of 2-Hydroxyglutarate (Homo sapiens)
- The Oncogenic Action of 2-Hydroxyglutarate (Mus musculus)
- The Oncogenic Action of 2-Hydroxyglutarate (Rattus norvegicus)
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria (Homo sapiens)
- The Oncogenic Action of Fumarate (Homo sapiens)
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria (Homo sapiens)
- The Oncogenic Action of Succinate (Homo sapiens)
- Threonine and 2-Oxobutanoate Degradation (Homo sapiens)
- Threonine and 2-Oxobutanoate Degradation (Mus musculus)
- Threonine and 2-Oxobutanoate Degradation (Bos taurus)
- Threonine and 2-Oxobutanoate Degradation (Rattus norvegicus)
- Threonine and 2-Oxobutanoate Degradation (Drosophila melanogaster)
- Threonine and 2-Oxobutanoate Degradation (Caenorhabditis elegans)
- Transfer of Acetyl Groups into Mitochondria (Homo sapiens)
- Transfer of Acetyl Groups into Mitochondria (Mus musculus)
- Transfer of Acetyl Groups into Mitochondria (Bos taurus)
- Transfer of Acetyl Groups into Mitochondria (Rattus norvegicus)
- Transfer of Acetyl Groups into Mitochondria (Drosophila melanogaster)
- Transfer of Acetyl Groups into Mitochondria (Caenorhabditis elegans)
- Tricarboxylic acid cycle (Homo sapiens)
- Triosephosphate Isomerase Deficiency (Homo sapiens)
- Triosephosphate Isomerase Deficiency (Mus musculus)
- Triosephosphate Isomerase Deficiency (Rattus norvegicus)
- Triosephosphate Isomerase Deficiency (Homo sapiens)
- Valine, Leucine, and Isoleucine Degradation (Homo sapiens)
- Valine, Leucine, and Isoleucine Degradation (Mus musculus)
- Valine, Leucine, and Isoleucine Degradation (Bos taurus)
- Valine, Leucine, and Isoleucine Degradation (Rattus norvegicus)
- Warburg Effect (Mus musculus)
- Warburg Effect (Bos taurus)
- Warburg Effect (Rattus norvegicus)
- Warburg Effect (Drosophila melanogaster)
- Warburg Effect (Caenorhabditis elegans)
- (
show more
show less
)
|