Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
tRNA Charging
Escherichia coli
Metabolic Pathway
This pathway is a compilation of Escherichia coli tRNA charging reactions involving amino acids transported into the cell. The aminoacyl-tRNA synthetase is an enzyme that attaches the appropriate amino acid onto its tRNA by catalyzing the esterification of a specific cognate amino acid or its precursor to one of all its compatible cognate tRNAs to form an aminoacyl-tRNA, which plays an important role in RNA translation. 20 different Aminoacyl-tRNA synthetases can make 20 different types of aa-tRNA for each amino acid according to the genetic code. This process is called "charging" or "loading" the tRNA with amino acid. Ribosome can transfer the amino acid from tRNA to a growing peptide after the tRNA is charged.
References
tRNA Charging References
Abdeljabbar DM, Klein TJ, Zhang S, Link AJ: A single genomic copy of an engineered methionyl-tRNA synthetase enables robust incorporation of azidonorleucine into recombinant proteins in E. coli. J Am Chem Soc. 2009 Dec 2;131(47):17078-9. doi: 10.1021/ja907969m.
Pubmed: 19894713
Abibi A, Ferguson AD, Fleming PR, Gao N, Hajec LI, Hu J, Laganas VA, McKinney DC, McLeod SM, Prince DB, Shapiro AB, Buurman ET: The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability. J Biol Chem. 2014 Aug 1;289(31):21651-62. doi: 10.1074/jbc.M114.574061. Epub 2014 Jun 16.
Pubmed: 24936059
Ahel I, Stathopoulos C, Ambrogelly A, Sauerwald A, Toogood H, Hartsch T, Soll D: Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. J Biol Chem. 2002 Sep 20;277(38):34743-8. doi: 10.1074/jbc.M206928200. Epub 2002 Jul 18.
Pubmed: 12130657
Ahel D, Slade D, Mocibob M, Soll D, Weygand-Durasevic I: Selective inhibition of divergent seryl-tRNA synthetases by serine analogues. FEBS Lett. 2005 Aug 15;579(20):4344-8. doi: 10.1016/j.febslet.2005.06.073.
Pubmed: 16054140
Airas RK: Analysis of the kinetic mechanism of arginyl-tRNA synthetase. Biochim Biophys Acta. 2006 Feb;1764(2):307-19. doi: 10.1016/j.bbapap.2005.11.020. Epub 2005 Dec 22.
Pubmed: 16427818
Airas RK: Magnesium dependence of the measured equilibrium constants of aminoacyl-tRNA synthetases. Biophys Chem. 2007 Dec;131(1-3):29-35. doi: 10.1016/j.bpc.2007.08.006. Epub 2007 Sep 4.
Pubmed: 17889423
Airas RK: Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Eur J Biochem. 1996 Aug 15;240(1):223-31.
Pubmed: 8797857
Airas RK: Chloride affects the interaction between tyrosyl-tRNA synthetase and tRNA. Biochim Biophys Acta. 1999 Oct 18;1472(1-2):51-61.
Pubmed: 10572925
Akesson B, Lundvik L: Simultaneous purification and some properties of aspartate: tRNA ligase and seven other amino-acid:tRNA ligases from Escherichia coli. Eur J Biochem. 1978 Feb 1;83(1):29-36.
Pubmed: 342244
Aldinger CA, Leisinger AK, Igloi GL: The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases. FEBS J. 2012 Oct;279(19):3622-3638. doi: 10.1111/j.1742-4658.2012.08722.x. Epub 2012 Sep 3.
Pubmed: 22831759
Alexander RW, Schimmel P: Evidence for breaking domain-domain functional communication in a synthetase-tRNA complex. Biochemistry. 1999 Dec 7;38(49):16359-65.
Pubmed: 10587461
Andrews D, Trezeguet V, Merle M, Graves PV, Muench KH, Labouesse B: Tryptophanamide formation by Escherichia coli tryptophanyl-tRNA synthetase. Eur J Biochem. 1985 Jan 2;146(1):201-9.
Pubmed: 3881255
Ankilova VN, Vlassov VV, Knorre DG, Melamed NV, Nuzdihna NA: Involvement of the D-stem of tRNAPhe (E. coli) in interaction with phenylalanyl-tRNA synthetase as shown by chemical modification. FEBS Lett. 1975 Dec 1;60(1):168-71.
Pubmed: 776674
Anselme J, Hartlein M: Asparaginyl-tRNA synthetase from Escherichia coli has significant sequence homologies with yeast aspartyl-tRNA synthetase. Gene. 1989 Dec 14;84(2):481-5.
Pubmed: 2693216
Anselme J, Hartlein M: Tyr-426 of the Escherichia coli asparaginyl-tRNA synthetase, an amino acid in a C-terminal conserved motif, is involved in ATP binding. FEBS Lett. 1991 Mar 11;280(1):163-6.
Pubmed: 2009959
Aoki H, Yaworsky PJ, Patel SD, Margolin-Brzezinski D, Park KS, Ganoza MC: The asparaginyl-tRNA synthetase gene encodes one of the complementing factors for thermosensitive translation in the Escherichia coli mutant strain, N4316. Eur J Biochem. 1992 Oct 15;209(2):511-21.
Pubmed: 1425658
Archibold ER, Williams LS: Regulation of synthesis of methionyl-, prolyl-, and threonyl-transfer ribonucleic acid synthetases of Escherichia coli. J Bacteriol. 1972 Mar;109(3):1020-6.
Pubmed: 4551738
Archibold ER, Williams LS: Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1973 Jun;114(3):1007-13.
Pubmed: 4576394
Archontis G, Simonson T, Karplus M: Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. J Mol Biol. 2001 Feb 16;306(2):307-27. doi: 10.1006/jmbi.2000.4285.
Pubmed: 11237602
Archontis G, Simonson T: Dielectric relaxation in an enzyme active site: molecular dynamics simulations interpreted with a macroscopic continuum model. J Am Chem Soc. 2001 Nov 7;123(44):11047-56.
Pubmed: 11686711
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from PW000799
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings