Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Aspartate Metabolism
Arabidopsis thaliana
Metabolic Pathway
Aspartate is synthesized from oxaloacetic acid and l-glutamate in the cytosol, the chloroplast, the mitochondria and the peroxisome. Aspartate is broken down via conversion to malate, a part of the reversible malate-aspartate shuttle in the mitochondrial and cytoplasmic space. This shuttle involves the transfer of reduction equivalents across the mitochondrial membrane to produce ATP. NADH is unable to cross the inner mitochondrial membrane. Therefore, the shuttle allows electrons from NADH in the cytosol, a product of glycolysis, to cross the inner mitochondrial membrane to produce ATP.
References
Aspartate Metabolism References
Berkemeyer M, Scheibe R, Ocheretina O: A novel, non-redox-regulated NAD-dependent malate dehydrogenase from chloroplasts of Arabidopsis thaliana L. J Biol Chem. 1998 Oct 23;273(43):27927-33.
Pubmed: 9774405
de la Torre F, De Santis L, Suarez MF, Crespillo R, Canovas FM: Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J. 2006 May;46(3):414-25. doi: 10.1111/j.1365-313X.2006.02713.x.
Pubmed: 16623902
Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH: Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell. 2004 Jan;16(1):241-56. doi: 10.1105/tpc.016055. Epub 2003 Dec 11.
Pubmed: 14671022
Lee CP, Eubel H, O'Toole N, Millar AH: Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism. Mol Cell Proteomics. 2008 Jul;7(7):1297-316. doi: 10.1074/mcp.M700535-MCP200. Epub 2008 Apr 1.
Pubmed: 18385124
Miesak BH, Coruzzi GM: Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol. 2002 Jun;129(2):650-60. doi: 10.1104/pp.005090.
Pubmed: 12068109
Millar AH, Sweetlove LJ, Giege P, Leaver CJ: Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 2001 Dec;127(4):1711-27.
Pubmed: 11743115
Pracharoenwattana I, Cornah JE, Smith SM: Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. Plant J. 2007 May;50(3):381-90. doi: 10.1111/j.1365-313X.2007.03055.x. Epub 2007 Mar 21.
Pubmed: 17376163
Rius SP, Casati P, Iglesias AA, Gomez-Casati DF: Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 2008 Nov;148(3):1655-67. doi: 10.1104/pp.108.128769. Epub 2008 Sep 26.
Pubmed: 18820081
Tomaz T, Bagard M, Pracharoenwattana I, Linden P, Lee CP, Carroll AJ, Stroher E, Smith SM, Gardestrom P, Millar AH: Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 2010 Nov;154(3):1143-57. doi: 10.1104/pp.110.161612. Epub 2010 Sep 27.
Pubmed: 20876337
Wilkie SE, Warren MJ: Recombinant expression, purification, and characterization of three isoenzymes of aspartate aminotransferase from Arabidopsis thaliana. Protein Expr Purif. 1998 Apr;12(3):381-9. doi: 10.1006/prep.1997.0845.
Pubmed: 9535706
Schultz CJ, Hsu M, Miesak B, Coruzzi GM: Arabidopsis mutants define an in vivo role for isoenzymes of aspartate aminotransferase in plant nitrogen assimilation. Genetics. 1998 Jun;149(2):491-9.
Pubmed: 9611168
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A: Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 2003 Dec 5;278(49):49102-12. doi: 10.1074/jbc.M308297200. Epub 2003 Sep 10.
Pubmed: 12968022
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings