Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Leucine Degradation
Arabidopsis thaliana
Metabolic Pathway
The degradation of L-leucine starts either in the mitochondria, the cytosol or the chloroplast. L-leucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of ketoleucine and glutamate. Ketoleucine reacts with coenzyme a through a NAD dependent branched chain keto-acid dehydrogenase complex resulting in the release of NADH, carbon dioxide and isovaleryl-CoA. Isovaleryl-CoA reacts with an oxidized electron flavoprotein resulting in the release of a reduced flavoprotein and a methylcrotonyl-CoA. The latter reacts with ATP and hydrogen carbonate through a 3-methylcrotonyl-CoA carboxylase resulting in the release of phosphate, ADP, hydrogen ion and 3-methylglutaconyl-CoA. The latter compound reacts with water through a methylglutaconyl-CoA hydratase resulting in the release of hydroxy-3-methylglutaryl-CoA. The latter reacts with a hydroxymethylglutaryl-CoA lyase resulting in the release of acetyl-CoA and acetoacetate.
References
Leucine Degradation References
Binder S: Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana. Arabidopsis Book. 2010;8:e0137. doi: 10.1199/tab.0137. Epub 2010 Aug 23.
Pubmed: 22303262
Diebold R, Schuster J, Daschner K, Binder S: The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol. 2002 Jun;129(2):540-50. doi: 10.1104/pp.001602.
Pubmed: 12068099
Fujiki Y, Sato T, Ito M, Watanabe A: Isolation and characterization of cDNA clones for the e1beta and E2 subunits of the branched-chain alpha-ketoacid dehydrogenase complex in Arabidopsis. J Biol Chem. 2000 Feb 25;275(8):6007-13.
Pubmed: 10681595
Schuster J, Binder S: The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol. 2005 Jan;57(2):241-54. doi: 10.1007/s11103-004-7533-1.
Pubmed: 15821880
Taylor NL, Heazlewood JL, Day DA, Millar AH: Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol. 2004 Feb;134(2):838-48. doi: 10.1104/pp.103.035675. Epub 2004 Feb 5.
Pubmed: 14764908
Che P, Wurtele ES, Nikolau BJ: Metabolic and environmental regulation of 3-methylcrotonyl-coenzyme A carboxylase expression in Arabidopsis. Plant Physiol. 2002 Jun;129(2):625-37. doi: 10.1104/pp.001842.
Pubmed: 12068107
Chen W, Taylor NL, Chi Y, Millar AH, Lambers H, Finnegan PM: The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. Plant Cell Environ. 2014 Mar;37(3):684-95. doi: 10.1111/pce.12187. Epub 2013 Nov 11.
Pubmed: 23961884
Daschner K, Couee I, Binder S: The mitochondrial isovaleryl-coenzyme a dehydrogenase of arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol. 2001 Jun;126(2):601-12.
Pubmed: 11402190
Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ: The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J. 2006 Sep;47(5):751-60. doi: 10.1111/j.1365-313X.2006.02826.x.
Pubmed: 16923016
Knill T, Schuster J, Reichelt M, Gershenzon J, Binder S: Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol. 2008 Mar;146(3):1028-39. doi: 10.1104/pp.107.111609. Epub 2007 Dec 27.
Pubmed: 18162591
Lutziger I, Oliver DJ: Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol. 2001 Oct;127(2):615-23.
Pubmed: 11598235
Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL: An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment. Plant Physiol. 2006 Mar;140(3):830-43. doi: 10.1104/pp.105.072066. Epub 2006 Jan 13.
Pubmed: 16415216
Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S: Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell. 2006 Oct;18(10):2664-79. doi: 10.1105/tpc.105.039339. Epub 2006 Oct 20.
Pubmed: 17056707
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings