Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Triosephosphate Isomerase Deficiency
Homo sapiens
Disease Pathway
Triosephosphate isomerase deficiency is a genetic disorder caused by a mutation in the TPI1 gene. The mutation of this gene causes the production of enzymes that are unstable or enzymes that have reduced activity. This means that cells have reduced energy supplies as glycolysis is compromised. This disorder causes anemia, movement problems and muscle weakness. As a result of the lack of red blood cells to carry oxygen through the body, patients may experience fatigue and shortness of breath. Movement problems appear in early infancy, typically before the age of 2 in patients with this disorder. Treatment includes blood transfusions.
References
Triosephosphate Isomerase Deficiency References
Serdaroglu G, Aydinok Y, Yilmaz S, Manco L, Ozer E: Triosephosphate isomerase deficiency: a patient with Val231Met mutation. Pediatr Neurol. 2011 Feb;44(2):139-42. doi: 10.1016/j.pediatrneurol.2010.08.016.
Pubmed: 21215915
Orosz F, Olah J, Ovadi J: Triosephosphate isomerase deficiency: facts and doubts. IUBMB Life. 2006 Dec;58(12):703-15. doi: 10.1080/15216540601115960.
Pubmed: 17424909
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003 May 29;423(6939):550-5. doi: 10.1038/nature01667. Epub 2003 May 18.
Pubmed: 12754525
Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK: Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007 Apr;5(4):305-12. doi: 10.1016/j.cmet.2007.03.002.
Pubmed: 17403374
Jager S, Handschin C, St-Pierre J, Spiegelman BM: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22. doi: 10.1073/pnas.0705070104. Epub 2007 Jul 3.
Pubmed: 17609368
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P: Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007 Apr 4;26(7):1913-23. doi: 10.1038/sj.emboj.7601633. Epub 2007 Mar 8.
Pubmed: 17347648
Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P: Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 2008 Jan 9;582(1):46-53. doi: 10.1016/j.febslet.2007.11.034. Epub 2007 Nov 26.
Pubmed: 18036349
Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM: Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006 May;3(5):333-41. doi: 10.1016/j.cmet.2006.04.002.
Pubmed: 16679291
Mazzucotelli A, Viguerie N, Tiraby C, Annicotte JS, Mairal A, Klimcakova E, Lepin E, Delmar P, Dejean S, Tavernier G, Lefort C, Hidalgo J, Pineau T, Fajas L, Clement K, Langin D: The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)gamma coactivator-1 alpha and the nuclear receptor PPAR alpha control the expression of glycerol kinase and metabolism genes independently of PPAR gamma activation in human white adipocytes. Diabetes. 2007 Oct;56(10):2467-75. doi: 10.2337/db06-1465. Epub 2007 Jul 23.
Pubmed: 17646210
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings