Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fructose Intolerance, Hereditary
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Disease
Created: 2018-09-10
Last Updated: 2019-09-15
Hereditary fructose intolerance, also called hereditary fructose-1-phosphate aldolase deficiency or hereditary fructosemia, is rare inborn error of metabolism (IEM) and autosomal recessive disorder of the fructose and mannose degradation pathway. It is caused by a mutation in the ALDOB gene, which encodes fructose-bisphosphatse aldolase B, also known as aldolase B or liver-type aldolase. This enzyme normally cleaves fructose 1,6-bisphosphate into dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate, isomers of one another that are later used in glycolysis. Hereditary fructose intolerance is characterized by an accumulation of fructose-1-phosphate in the liver, as well as a depletion of ATP due to glycolysis having less input than necessary. Symptoms of this disorder include hypoglycemia, abdominal pain and vomiting as well as other symptoms after ingesting fructose. After repeated ingestion of fructose, liver and kidney damage can occur, as well as growth retardation, seizures, and even death. Hereditary fructose intolerance can be treated by eliminating fructose from the diet, and multivitamins can be prescribed to make up for the lack of fruits, a major source of fructose, in the diet. It is estimated that hereditary fructose intolerance affects 1 in between 20,000 and 30,000 individuals.
References
Fructose Intolerance, Hereditary References
Perheentupa J, Raivio KO, Nikkila EA: Hereditary fructose intolerance. Acta Med Scand Suppl. 1972;542:65-75.
Pubmed: 4579755
Oppelt SA, Sennott EM, Tolan DR: Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans. Mol Genet Metab. 2015 Mar;114(3):445-50. doi: 10.1016/j.ymgme.2015.01.001. Epub 2015 Jan 22.
Pubmed: 25637246
Fructose and Mannose Degradation References
Carper D, Nishimura C, Shinohara T, Dietzchold B, Wistow G, Craft C, Kador P, Kinoshita JH: Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase. FEBS Lett. 1987 Aug 10;220(1):209-13. doi: 10.1016/0014-5793(87)80905-5.
Pubmed: 3111886
Graham C, Szpirer C, Levan G, Carper D: Characterization of the aldose reductase-encoding gene family in rat. Gene. 1991 Nov 15;107(2):259-67. doi: 10.1016/0378-1119(91)90326-7.
Pubmed: 1748296
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Karlsson C, Jornvall H, Hoog JO: Sorbitol dehydrogenase: cDNA coding for the rat enzyme. Variations within the alcohol dehydrogenase family independent of quaternary structure and metal content. Eur J Biochem. 1991 Jun 15;198(3):761-5. doi: 10.1111/j.1432-1033.1991.tb16077.x.
Pubmed: 2050152
Wen Y, Bekhor I: Sorbitol dehydrogenase. Full-length cDNA sequencing reveals a mRNA coding for a protein containing an additional 42 amino acids at the N-terminal end. Eur J Biochem. 1993 Oct 1;217(1):83-7. doi: 10.1111/j.1432-1033.1993.tb18221.x.
Pubmed: 8223590
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Schwab DA, Wilson JE: Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2563-7. doi: 10.1073/pnas.86.8.2563.
Pubmed: 2704734
Schwab DA, Wilson JE: The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA. J Biol Chem. 1988 Mar 5;263(7):3220-4.
Pubmed: 3277968
Schirch DM, Wilson JE: Rat brain hexokinase: amino acid sequence at the substrate hexose binding site is homologous to that of yeast hexokinase. Arch Biochem Biophys. 1987 Aug 15;257(1):1-12. doi: 10.1016/0003-9861(87)90536-4.
Pubmed: 3631958
Hotta K, Nakajima H, Yamasaki T, Hamaguchi T, Kuwajima M, Noguchi T, Tanaka T, Kono N, Tarui S: Rat-liver-type phosphofructokinase mRNA. Structure, tissue distribution and regulation. Eur J Biochem. 1991 Dec 5;202(2):293-8. doi: 10.1111/j.1432-1033.1991.tb16375.x.
Pubmed: 1836995
el-Maghrabi MR, Pilkis J, Marker AJ, Colosia AD, D'Angelo G, Fraser BA, Pilkis SJ: cDNA sequence of rat liver fructose-1,6-bisphosphatase and evidence for down-regulation of its mRNA by insulin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8430-4. doi: 10.1073/pnas.85.22.8430.
Pubmed: 2847161
el-Maghrabi MR, Lange AJ, Kummel L, Pilkis SJ: The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression. J Biol Chem. 1991 Feb 5;266(4):2115-20.
Pubmed: 1846613
Bertolotti R, Armbruster-Hilbert L, Okayama H: Liver fructose-1,6-bisphosphatase cDNA: trans-complementation of fission yeast and characterization of two human transcripts. Differentiation. 1995 Jul;59(1):51-60. doi: 10.1046/j.1432-0436.1995.5910051.x.
Pubmed: 7589895
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000725
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings