Loading Pathway... 
Error: Pathway image not found.
Hide 
    Pathway Description
      L-Cysteine Degradation
Escherichia coli
          Metabolic Pathway
          
        
          The degradation of cysteine starts with L-cysteine reacting with l-cysteine desulfhydrase resulting in the release of a hydrogen sulfide, a hydrogen ion and a a 2-aminoprop-2-enoate. The latter compound in turn reacts spontaneously to form a 2-iminopropanoate. This compound in turn reacts spontaneously with water and a hydrogen ion resulting in the release of ammonium and pyruvate.
        
      References
      
      L-Cysteine Degradation References
Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S: Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol. 2003 Aug;62(2-3):239-43. doi: 10.1007/s00253-003-1262-2. Epub 2003 Mar 20.
                  Pubmed: 12883870
              Awano N, Wada M, Mori H, Nakamori S, Takagi H: Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol. 2005 Jul;71(7):4149-52. doi: 10.1128/AEM.71.7.4149-4152.2005.
                  Pubmed: 16000837
              Cantarow WD, Cheung HT, Sundharadas G: Effects of prostaglandins on the spreading, adhesion and migration of mouse peritoneal macrophages. Prostaglandins. 1978 Jul;16(1):39-46.
                  Pubmed: 704923
              DELWICHE EA: Activators for the cysteine desulfhydrase system of an Escherichia coli mutant. J Bacteriol. 1951 Dec;62(6):717-22.
                  Pubmed: 14907623
              Dwivedi CM, Ragin RC, Uren JR: Cloning, purification, and characterization of beta-cystathionase from Escherichia coli. Biochemistry. 1982 Jun 22;21(13):3064-9.
                  Pubmed: 7049234
              METAXAS MA, DELWICHE EA: The L-cysteine desulfhydrase of Escherichia coli. J Bacteriol. 1955 Dec;70(6):735-7.
                  Pubmed: 13271322
              Nakamori S, Kobayashi SI, Kobayashi C, Takagi H: Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol. 1998 May;64(5):1607-11.
                  Pubmed: 9572924
              NEWTON WA, SNELL EE: CATALYTIC PROPERTIES OF TRYPTOPHANASE, A MULTIFUNCTIONAL PYRIDOXAL PHOSPHATE ENZYME. Proc Natl Acad Sci U S A. 1964 Mar;51:382-9.
                  Pubmed: 14171448
              Wang DY, De Stavola BL, Bulbrook RD, Allen DS, Kwa HG, Fentiman IS, Hayward JL, Millis RR: Relationship of blood prolactin levels and the risk of subsequent breast cancer. Int J Epidemiol. 1992 Apr;21(2):214-21.
                  Pubmed: 1428472
              Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H: Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol. 2006 Jul;72(7):4735-42. doi: 10.1128/AEM.02507-05.
                  Pubmed: 16820466
              This pathway was propagated using PathWhiz - 
                Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
              
            Propagated from PW002110
        Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings