Loader
Loading Pathway...
cAMP-dependent protein kinase type II-beta regulatory subunit cAMP-dependent protein kinase catalytic subunit alpha cAMP-dependent protein kinase catalytic subunit beta cAMP-dependent protein kinase type I-alpha regulatory subunit cAMP-dependent protein kinase catalytic subunit gamma cAMP-dependent protein kinase type I-beta regulatory subunit cAMP-dependent protein kinase type II-alpha regulatory subunit D(1B) dopamine receptor Synaptic vesicular amine transporter Voltage- dependent calcium channel subunit alpha-2/delta-1 Voltage- dependent calcium channel subunit alpha-2/delta-2 Voltage- dependent N-type calcium channel subunit alpha-1B Sodium- dependent dopamine transporter Tyrosine 3-monooxygenase Aromatic-L- amino-acid decarboxylase D(1A) dopamine receptor Guanine nucleotide- binding protein G(s) subunit alpha isoforms short Adenylate cyclase type 2 cAMP Ca+ Dopamine Dopamine Dopamine Ca+ L-Tyrosine L-Dopa CO2 ATP PPi Na+ Na+ Fe2+ Pyridoxal 5'-phosphate GTP Neuronal modulation and Excitability Magnesium Activation of D1 and D5 dopamine receptors activates the Gs signalling cascade which leads to the activation of adenylyl cyclase and increase in the conversion of ATP to cAMP. Presynaptic Neuron Cytosol Synaptic Vesicle Postsynaptic Neuron Cytosol Dopamine is produced in the Ventral Tegmental Area of the brain Prefrontal Cortex Synapse Brain An increase in intracellular cAMP levels leads to an increase in the activation of PKA Dopamine activates G protein coupled receptors Depending on the specific targets of PKA phosphorylation, the overall effect on neuronal excitability can vary. PKA activation can increase excitability by modulating ion channels and synaptic receptors and it may also decrease excitability by promoting inhibitory processes.
PRKAR2B PRKACA PRKACB PRKAR1A PRKACG PRKAR1B PRKAR2A DRD5 SLC18A2 CACNA2D1 CACNA2D2 CACNA1B SLC6A3 TH DDC DRD1 GNG2 GNB1 GNAS ADCY2 cAMP Calcium Dopamine Dopamine Dopamine Calcium L-Tyrosine L-Dopa Carbon dioxide Adenosine triphosphate Pyrophosphate Sodium Sodium Guanosine triphosphate Neuronal modulation and Excitability
PRKAR2B PRKACA PRKACB PRKAR1A PRKACG PRKAR1B PRKAR2A DRD5 SLC18A2 CACNA2D1 CACNA2D2 CACNA1B SLC6A3 TH DDC DRD1 GNG2 GNB1 GNAS ADCY2 cAMP Ca+ LDP LDP LDP Ca+ Tyr L-Dopa CO2 ATP PPi Na+ Na+ Fe2+ Pyr-5'P GTP N m a E Mg2+ Activation of D1 and D5 dopamine receptors activates the Gs signalling cascade which leads to the activation of adenylyl cyclase and increase in the conversion of ATP to cAMP. Presynaptic Neuron Cytosol Synaptic Vesicle Postsynaptic Neuron Cytosol Dopamine is produced in the Ventral Tegmental Area of the brain Prefrontal Cortex Synapse Brain An increase in intracellular cAMP levels leads to an increase in the activation of PKA Dopamine activates G protein coupled receptors Depending on the specific targets of PKA phosphorylation, the overall effect on neuronal excitability can vary. PKA activation can increase excitability by modulating ion channels and synaptic receptors and it may also decrease excitability by promoting inhibitory processes.
PRKAR2B PRKACA PRKACB PRKAR1A PRKACG PRKAR1B PRKAR2A DRD5 SLC18A2 CACNA2D1 CACNA2D2 CACNA1B SLC6A3 TH DDC DRD1 GNG2 GNB1 GNAS ADCY2 cAMP Ca2+ LDP LDP LDP Ca2+ Tyr L-Dopa CO2 ATP Ppi Na+ Na+ GTP N m a E