Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Glycine and Serine Metabolism
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2013-08-19
Last Updated: 2023-10-12
This pathway describes the synthesis and breakdown of several small amino acids, including glycine, serine, and cysteine. All of these compounds share common intermediates and almost all can be biosynthesized from one another. Serine and glycine are not essential amino acids and can be synthesized from several routes. On the other hand, cysteine is a conditionally essential amino acid, meaning that it can be endogenously synthesized but insufficient quantities may be produced due to certain diseases or conditions. Serine is central to the synthesis and breakdown of the other two amino acids. Serine can be synthesized via glycerate, which can be converted into glycerate 3-phosphate (via glycerate kinase), which in turn is converted into phosphohydroxypyruvate by phosphoglycerate dehydrogenase and then phosphoserine (via phosphoserine transaminase) and finally to serine (via phosphoserine phosphatase). The serine synthesized via this route can be used to create cysteine and glycine through the homocysteine cycle. In the homocysteine cycle, cystathionine beta-synthase catalyzes the condensation of homocysteine and serine to give cystathionine. Cystathionine beta-lyase then converts this double amino acid to cysteine, ammonia, and alpha-ketoglutarate. Glycine is biosynthesized in the body from the amino acid serine. In most organisms, the enzyme serine hydroxymethyltransferase (SHMT) catalyzes this transformation using tetrahydrofolate (THF), leading to methylene THF and glycine. Glycine can be degraded via three pathways. The predominant pathway in animals involves the glycine cleavage system, also known as the glycine decarboxylase complex or GDC. This system is usually triggered in response to high concentrations of glycine. The system is sometimes referred to as glycine synthase when it runs in the reverse direction to produce glycine. The glycine cleavage system consists of four weakly interacting proteins: T, P, L and H-proteins. The glycine cleavage system leads to the degradation of glycine into ammonia and CO2. In the second pathway, glycine is degraded in two steps. The first step in this degradation pathway is the reverse of glycine biosynthesis from serine with serine hydroxymethyltransferase (SHMT). The serine generated via glycine is then converted into pyruvate by the enzyme known as serine dehydratase. In the third route to glycine degradation, glycine is converted into glyoxylate by D-amino acid oxidase. Glyoxylate is then oxidized by hepatic lactate dehydrogenase into oxalate in an NAD+-dependent reaction.
References
Glycine and Serine Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Hsu YP, Weyler W, Chen S, Sims KB, Rinehart WB, Utterback MC, Powell JF, Breakefield XO: Structural features of human monoamine oxidase A elucidated from cDNA and peptide sequences. J Neurochem. 1988 Oct;51(4):1321-4. doi: 10.1111/j.1471-4159.1988.tb03105.x.
Pubmed: 3418353
Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC: cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4934-8. doi: 10.1073/pnas.85.13.4934.
Pubmed: 3387449
Chen ZY, Hotamisligil GS, Huang JK, Wen L, Ezzeddine D, Aydin-Muderrisoglu N, Powell JF, Huang RH, Breakefield XO, Craig I, et al.: Structure of the human gene for monoamine oxidase type A. Nucleic Acids Res. 1991 Aug 25;19(16):4537-41. doi: 10.1093/nar/19.16.4537.
Pubmed: 1886775
Novoradovsky A, Tsai SJ, Goldfarb L, Peterson R, Long JC, Goldman D: Mitochondrial aldehyde dehydrogenase polymorphism in Asian and American Indian populations: detection of new ALDH2 alleles. Alcohol Clin Exp Res. 1995 Oct;19(5):1105-10. doi: 10.1111/j.1530-0277.1995.tb01587.x.
Pubmed: 8561277
Braun T, Bober E, Singh S, Agarwal DP, Goedde HW: Evidence for a signal peptide at the amino-terminal end of human mitochondrial aldehyde dehydrogenase. FEBS Lett. 1987 May 11;215(2):233-6. doi: 10.1016/0014-5793(87)80152-7.
Pubmed: 3582651
Braun T, Bober E, Singh S, Agarwal DP, Goedde HW: Isolation and sequence analysis of a full length cDNA clone coding for human mitochondrial aldehyde dehydrogenase. Nucleic Acids Res. 1987 Apr 10;15(7):3179. doi: 10.1093/nar/15.7.3179.
Pubmed: 3562250
Edgar AJ, Polak JM: Molecular cloning of the human and murine 2-amino-3-ketobutyrate coenzyme A ligase cDNAs. Eur J Biochem. 2000 Mar;267(6):1805-12. doi: 10.1046/j.1432-1327.2000.01175.x.
Pubmed: 10712613
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP, et al.: The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489-95. doi: 10.1038/990031.
Pubmed: 10591208
Binzak BA, Vockley JG, Jenkins RB, Vockley J: Structure and analysis of the human dimethylglycine dehydrogenase gene. Mol Genet Metab. 2000 Mar;69(3):181-7. doi: 10.1006/mgme.2000.2980.
Pubmed: 10767172
Binzak BA, Wevers RA, Moolenaar SH, Lee YM, Hwu WL, Poggi-Bach J, Engelke UF, Hoard HM, Vockley JG, Vockley J: Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. Am J Hum Genet. 2001 Apr;68(4):839-47. doi: 10.1086/319520. Epub 2001 Feb 28.
Pubmed: 11231903
Eschenbrenner M, Jorns MS: Cloning and mapping of the cDNA for human sarcosine dehydrogenase, a flavoenzyme defective in patients with sarcosinemia. Genomics. 1999 Aug 1;59(3):300-8. doi: 10.1006/geno.1999.5886.
Pubmed: 10444331
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.
Pubmed: 15164053
Kure S, Narisawa K, Tada K: Structural and expression analyses of normal and mutant mRNA encoding glycine decarboxylase: three-base deletion in mRNA causes nonketotic hyperglycinemia. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1176-82. doi: 10.1016/0006-291x(91)91545-n.
Pubmed: 1996985
Kume A, Koyata H, Sakakibara T, Ishiguro Y, Kure S, Hiraga K: The glycine cleavage system. Molecular cloning of the chicken and human glycine decarboxylase cDNAs and some characteristics involved in the deduced protein structures. J Biol Chem. 1991 Feb 15;266(5):3323-9.
Pubmed: 1993704
Hayasaka K, Nanao K, Takada G, Okamura-Ikeda K, Motokawa Y: Isolation and sequence determination of cDNA encoding human T-protein of the glycine cleavage system. Biochem Biophys Res Commun. 1993 Apr 30;192(2):766-71. doi: 10.1006/bbrc.1993.1480.
Pubmed: 7916605
Nanao K, Takada G, Takahashi E, Seki N, Komatsu Y, Okamura-Ikeda K, Motokawa Y, Hayasaka K: Structure and chromosomal localization of the aminomethyltransferase gene (AMT) Genomics. 1994 Jan 1;19(1):27-30.
Pubmed: 8188235
Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M, Wang B, Zou J, Zhu WG, Yin Y, Gu W, Luo J: SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Res. 2018 Jan 15;78(2):372-386. doi: 10.1158/0008-5472.CAN-17-1912. Epub 2017 Nov 27.
Pubmed: 29180469
Minton DR, Nam M, McLaughlin DJ, Shin J, Bayraktar EC, Alvarez SW, Sviderskiy VO, Papagiannakopoulos T, Sabatini DM, Birsoy K, Possemato R: Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs. Mol Cell. 2018 Feb 15;69(4):610-621.e5. doi: 10.1016/j.molcel.2018.01.024.
Pubmed: 29452640
Feigenbaum AS, Robinson BH: The structure of the human dihydrolipoamide dehydrogenase gene (DLD) and its upstream elements. Genomics. 1993 Aug;17(2):376-81. doi: 10.1006/geno.1993.1335.
Pubmed: 8406489
Otulakowski G, Robinson BH: Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase. Homology to other disulfide oxidoreductases. J Biol Chem. 1987 Dec 25;262(36):17313-8.
Pubmed: 3693355
Pons G, Raefsky-Estrin C, Carothers DJ, Pepin RA, Javed AA, Jesse BW, Ganapathi MK, Samols D, Patel MS: Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component human alpha-ketoacid dehydrogenase complexes. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1422-6. doi: 10.1073/pnas.85.5.1422.
Pubmed: 3278312
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings