Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Threonine and 2-Oxobutanoate Degradation
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2013-08-19
Last Updated: 2022-10-18
2-oxobutanoate, also known as 2-Ketobutyric acid, is a 2-keto acid that is commonly produced in the metabolism of amino acids such as methionine and threonine. Like other 2-keto acids, degradation of 2-oxobutanoate occurs in the mitochondrial matrix and begins with oxidative decarboxylation to its acyl coenzyme A derivative, propionyl-CoA. This reaction is mediated by a class of large, multienzyme complexes called 2-oxo acid dehydrogenase complexes. While no 2-oxo acid dehydrogenase complex is specific to 2-oxobutanoate, numerous complexes can catalyze its reaction. In this pathway the branched-chain alpha-keto acid dehydrogenase complex is depicted. All 2-oxo acid dehydrogenase complexes consist of three main components: a 2-oxo acid dehydrogenase (E1) with a thiamine pyrophosphate cofactor, a dihydrolipoamide acyltransferase (E2) with a lipoate cofactor, and a dihydrolipoamide dehydrogenase (E3) with a flavin cofactor. E1 binds the 2-oxobutanoate to the lipoate on E2, which then transfers the propionyl group to coenzyme A, producing propionyl-CoA and reducing the lipoate. E3 then transfers protons to NAD in order to restore the lipoate. Propionyl-CoA carboxylase transforms the propionyl-CoA to S-methylmalonyl-CoA, which is then converted to R-methylmalonyl-CoA via methylmalonyl-CoA epimerase. In the final step, methylmalonyl-CoA mutase acts on the R-methylmalonyl-CoA to produce succinyl-CoA.
References
Threonine and 2-Oxobutanoate Degradation References
Bobik TA, Rasche ME: Identification of the human methylmalonyl-CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J Biol Chem. 2001 Oct 5;276(40):37194-8. doi: 10.1074/jbc.M107232200. Epub 2001 Jul 31.
Pubmed: 11481338
de Kok A, Hengeveld AF, Martin A, Westphal AH: The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim Biophys Acta. 1998 Jun 29;1385(2):353-66.
Pubmed: 9655933
Fries M, Jung HI, Perham RN: Reaction mechanism of the heterotetrameric (alpha2beta2) E1 component of 2-oxo acid dehydrogenase multienzyme complexes. Biochemistry. 2003 Jun 17;42(23):6996-7002. doi: 10.1021/bi027397z.
Pubmed: 12795594
Jansen R, Kalousek F, Fenton WA, Rosenberg LE, Ledley FD: Cloning of full-length methylmalonyl-CoA mutase from a cDNA library using the polymerase chain reaction. Genomics. 1989 Feb;4(2):198-205.
Pubmed: 2567699
Paxton R, Scislowski PW, Davis EJ, Harris RA: Role of branched-chain 2-oxo acid dehydrogenase and pyruvate dehydrogenase in 2-oxobutyrate metabolism. Biochem J. 1986 Mar 1;234(2):295-303.
Pubmed: 3718468
Zhou ZH, McCarthy DB, O'Connor CM, Reed LJ, Stoops JK: The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14802-7. doi: 10.1073/pnas.011597698.
Pubmed: 11752427
Edgar AJ: The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet. 2002 Oct 2;3:18. Epub 2002 Oct 2.
Pubmed: 12361482
Ogawa H, Gomi T, Konishi K, Date T, Nakashima H, Nose K, Matsuda Y, Peraino C, Pitot HC, Fujioka M: Human liver serine dehydratase. cDNA cloning and sequence homology with hydroxyamino acid dehydratases from other sources. J Biol Chem. 1989 Sep 25;264(27):15818-23.
Pubmed: 2674117
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Yamada T, Komoto J, Kasuya T, Takata Y, Ogawa H, Mori H, Takusagawa F: A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: crystal structure and site-directed mutagenesis studies. Biochim Biophys Acta. 2008 May;1780(5):809-18. doi: 10.1016/j.bbagen.2008.01.020. Epub 2008 Feb 19.
Pubmed: 18342636
Lau KS, Chuang JL, Herring WJ, Danner DJ, Cox RP, Chuang DT: The complete cDNA sequence for dihydrolipoyl transacylase (E2) of human branched-chain alpha-keto acid dehydrogenase complex. Biochim Biophys Acta. 1992 Oct 20;1132(3):319-21. doi: 10.1016/0167-4781(92)90169-z.
Pubmed: 1420314
Hummel KB, Litwer S, Bradford AP, Aitken A, Danner DJ, Yeaman SJ: Nucleotide sequence of a cDNA for branched chain acyltransferase with analysis of the deduced protein structure. J Biol Chem. 1988 May 5;263(13):6165-8.
Pubmed: 3245861
Danner DJ, Litwer S, Herring WJ, Pruckler J: Construction and nucleotide sequence of a cDNA encoding the full-length preprotein for human branched chain acyltransferase. J Biol Chem. 1989 May 5;264(13):7742-6.
Pubmed: 2708389
Feigenbaum AS, Robinson BH: The structure of the human dihydrolipoamide dehydrogenase gene (DLD) and its upstream elements. Genomics. 1993 Aug;17(2):376-81. doi: 10.1006/geno.1993.1335.
Pubmed: 8406489
Otulakowski G, Robinson BH: Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase. Homology to other disulfide oxidoreductases. J Biol Chem. 1987 Dec 25;262(36):17313-8.
Pubmed: 3693355
Pons G, Raefsky-Estrin C, Carothers DJ, Pepin RA, Javed AA, Jesse BW, Ganapathi MK, Samols D, Patel MS: Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component human alpha-ketoacid dehydrogenase complexes. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1422-6. doi: 10.1073/pnas.85.5.1422.
Pubmed: 3278312
Wang YP, Qi ML, Li TT, Zhao YJ: Two novel mutations in the BCKDHB gene (R170H, Q346R) cause the classic form of maple syrup urine disease (MSUD). Gene. 2012 Apr 25;498(1):112-5. doi: 10.1016/j.gene.2012.01.082. Epub 2012 Feb 3.
Pubmed: 22326532
Nobukuni Y, Mitsubuchi H, Endo F, Akaboshi I, Asaka J, Matsuda I: Maple syrup urine disease. Complete primary structure of the E1 beta subunit of human branched chain alpha-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease. J Clin Invest. 1990 Jul;86(1):242-7. doi: 10.1172/JCI114690.
Pubmed: 2365818
Chuang JL, Cox RP, Chuang DT: Maple syrup urine disease: the E1beta gene of human branched-chain alpha-ketoacid dehydrogenase complex has 11 rather than 10 exons, and the 3' UTR in one of the two E1beta mRNAs arises from intronic sequences. Am J Hum Genet. 1996 Jun;58(6):1373-7.
Pubmed: 8651316
Park HD, Lee DH, Hong YH, Kang DH, Lee YK, Song J, Lee SY, Kim JW, Ki CS, Lee YW: Three Korean patients with maple syrup urine disease: four novel mutations in the BCKDHA gene. Ann Clin Lab Sci. 2011 Spring;41(2):167-73.
Pubmed: 21844576
McKean MC, Winkeler KA, Danner DJ: Nucleotide sequence of the 5' end including the initiation codon of cDNA for the E1 alpha subunit of the human branched chain alpha-ketoacid dehydrogenase complex. Biochim Biophys Acta. 1992 Nov 15;1171(1):109-12. doi: 10.1016/0167-4781(92)90149-t.
Pubmed: 1420356
Campeau E, Desviat LR, Leclerc D, Wu X, Perez B, Ugarte M, Gravel RA: Structure of the PCCA gene and distribution of mutations causing propionic acidemia. Mol Genet Metab. 2001 Sep-Oct;74(1-2):238-47. doi: 10.1006/mgme.2001.3210.
Pubmed: 11592820
Lamhonwah AM, Barankiewicz TJ, Willard HF, Mahuran DJ, Quan F, Gravel RA: Isolation of cDNA clones coding for the alpha and beta chains of human propionyl-CoA carboxylase: chromosomal assignments and DNA polymorphisms associated with PCCA and PCCB genes. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4864-8. doi: 10.1073/pnas.83.13.4864.
Pubmed: 3460076
Ugarte M, Perez-Cerda C, Rodriguez-Pombo P, Desviat LR, Perez B, Richard E, Muro S, Campeau E, Ohura T, Gravel RA: Overview of mutations in the PCCA and PCCB genes causing propionic acidemia. Hum Mutat. 1999;14(4):275-82. doi: 10.1002/(SICI)1098-1004(199910)14:4<275::AID-HUMU1>3.0.CO;2-N.
Pubmed: 10502773
Ohura T, Ogasawara M, Ikeda H, Narisawa K, Tada K: The molecular defect in propionic acidemia: exon skipping caused by an 8-bp deletion from an intron in the PCCB allele. Hum Genet. 1993 Oct;92(4):397-402. doi: 10.1007/bf01247343.
Pubmed: 8225321
Muro S, Rodriguez-Pombo P, Perez B, Perez-Cerda C, Desviat LR, Sperl W, Skladal D, Sass JO, Ugarte M: Identification of novel mutations in the PCCB gene in European propionic acidemia patients. Mutation in brief no. 253. Online. Hum Mutat. 1999;14(1):89-90. doi: 10.1002/(SICI)1098-1004(1999)14:1<89::AID-HUMU18>3.0.CO;2-5.
Pubmed: 10447268
Bikker H, Bakker HD, Abeling NG, Poll-The BT, Kleijer WJ, Rosenblatt DS, Waterham HR, Wanders RJ, Duran M: A homozygous nonsense mutation in the methylmalonyl-CoA epimerase gene (MCEE) results in mild methylmalonic aciduria. Hum Mutat. 2006 Jul;27(7):640-3. doi: 10.1002/humu.20373.
Pubmed: 16752391
Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. doi: 10.1038/nature03466.
Pubmed: 15815621
Nham SU, Wilkemeyer MF, Ledley FD: Structure of the human methylmalonyl-CoA mutase (MUT) locus. Genomics. 1990 Dec;8(4):710-6.
Pubmed: 1980486
Raff ML, Crane AM, Jansen R, Ledley FD, Rosenblatt DS: Genetic characterization of a MUT locus mutation discriminating heterogeneity in mut0 and mut- methylmalonic aciduria by interallelic complementation. J Clin Invest. 1991 Jan;87(1):203-7. doi: 10.1172/JCI114972.
Pubmed: 1670635
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings