Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fatty Acid Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-07
Last Updated: 2019-09-03
Fatty acid metabolism is also known as beta-oxidation. During beta-oxidation, acetyl-CoA is produced which can be used in the citric acid cycle. When ATP is needed, ATP may be generated by increasing fatty acid metabolism. Therefore fatty acids constitute a large energy source for organisms since it can be a source of generated ATP when needed. Fatty acid metabolism is essentially the reverse reaction of fatty acid synthesis which is essential for cellular processes since the membrane is mostly made up of fatty acids.
References
Fatty Acid Metabolism References
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Garwin JL, Klages AL, Cronan JE Jr: Structural, enzymatic, and genetic studies of beta-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J Biol Chem. 1980 Dec 25;255(24):11949-56.
Pubmed: 7002930
Garwin JL, Klages AL, Cronan JE Jr: Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem. 1980 Apr 25;255(8):3263-5.
Pubmed: 6988423
Gelmann EP, Cronan JE Jr: Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid. J Bacteriol. 1972 Oct;112(1):381-7.
Pubmed: 4562402
Heath RJ, Rock CO: Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem. 1995 Nov 3;270(44):26538-42.
Pubmed: 7592873
Heath RJ, Rock CO: Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem. 1996 Jan 26;271(4):1833-6.
Pubmed: 8567624
Leesong M, Henderson BS, Gillig JR, Schwab JM, Smith JL: Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure. 1996 Mar 15;4(3):253-64.
Pubmed: 8805534
White SW, Zheng J, Zhang YM, Rock: The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem. 2005;74:791-831. doi: 10.1146/annurev.biochem.74.082803.133524.
Pubmed: 15952903
Coleman J, Raetz CR: First committed step of lipid A biosynthesis in Escherichia coli: sequence of the lpxA gene. J Bacteriol. 1988 Mar;170(3):1268-74. doi: 10.1128/jb.170.3.1268-1274.1988.
Pubmed: 3277952
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Cronan JE Jr, Li WB, Coleman R, Narasimhan M, de Mendoza D, Schwab JM: Derived amino acid sequence and identification of active site residues of Escherichia coli beta-hydroxydecanoyl thioester dehydrase. J Biol Chem. 1988 Apr 5;263(10):4641-6.
Pubmed: 2832401
Henry MF, Cronan JE Jr: A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell. 1992 Aug 21;70(4):671-9. doi: 10.1016/0092-8674(92)90435-f.
Pubmed: 1505031
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Kauppinen S, Siggaard-Andersen M, von Wettstein-Knowles P: beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357-70.
Pubmed: 3076376
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Lai CY, Cronan JE: Isolation and characterization of beta-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol. 2004 Mar;186(6):1869-78. doi: 10.1128/jb.186.6.1869-1878.2004.
Pubmed: 14996818
Rawlings M, Cronan JE Jr: The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem. 1992 Mar 25;267(9):5751-4.
Pubmed: 1556094
Heath RJ, Rock CO: Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem. 1995 Nov 3;270(44):26538-42. doi: 10.1074/jbc.270.44.26538.
Pubmed: 7592873
Bergler H, Hogenauer G, Turnowsky F: Sequences of the envM gene and of two mutated alleles in Escherichia coli. J Gen Microbiol. 1992 Oct;138(10):2093-100. doi: 10.1099/00221287-138-10-2093.
Pubmed: 1364817
Kater MM, Koningstein GM, Nijkamp HJ, Stuitje AR: The use of a hybrid genetic system to study the functional relationship between prokaryotic and plant multi-enzyme fatty acid synthetase complexes. Plant Mol Biol. 1994 Aug;25(5):771-90. doi: 10.1007/bf00028873.
Pubmed: 8075395
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings