Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Mannose Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-26
Last Updated: 2019-08-13
Escherichia coli can utilize D-mannose for its sole carbon and energy source. Alpha-D-mannose is introduced into the cytoplasm through a mannose PTS permease. A phosphotransferase system (PTS) takes up mannose producing D-mannose-6-phosphate which is then converted to D-fructose-6-phosphate via an isomerase. D-fructose-6-phosphate is an intermediate of glycolysis and can enter the pathways of metabolism. The first two enzymes in the pathway catalyze isomerizations that interconvert phosphorylated aldohexoses (β-D-glucose-6-phosphate, D-mannose-6-phosphate) and phosphorylated ketohexoses (D-fructose-6-phosphate). The reaction catalyzed by mannose-6-phosphate isomerase that produces D-mannose-6-phosphate is the first committed step in the biosynthesis of the activated mannose donor GDP-α-D-mannose. D-mannose-6-phosphate is then converted to GDP-D-mannose by the interaction of phosphomannomutase and mannose-1-phosphate guanylyltransferase. GDP-D-mannose produces GDP-L-fucose beginning with the dehydration to GDP-4-dehydro-6-deoxy-D-mannose. GDP-fucose is synthesized by a two step epimerase and reductase of GDP-4-dehydro-6-deoxy-D-mannose. L-fucose then enters the colanic acid building blocks biosynthesis pathway.
References
Mannose Metabolism References
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Gao H, Chen Y, Leary JA: Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose–ketose isomers using tandem mass spectrometry. International Journal Of Mass Spectrometry. 2005 Feb 01;240(3):291-299. doi: 10.1016/j.ijms.2004.09.017.
Honghong J, Fuping L, Yu L, Xiaoguang L, Yihan L, Hongbin W, Jing L, Yueting C: Synthesis of GDP-mannose using coupling fermentation of recombinant Escherichia coli. Biotechnol Lett. 2011 Jun;33(6):1145-50. doi: 10.1007/s10529-011-0547-2. Epub 2011 Feb 4.
Pubmed: 21293904
Sampaio MM, Santos H, Boos W: Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment. Appl Environ Microbiol. 2003 Jan;69(1):233-40.
Pubmed: 12514000
Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR: Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol. 1996 Aug;178(16):4885-93.
Pubmed: 8759852
Andrianopoulos K, Wang L, Reeves PR: Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol. 1998 Feb;180(4):998-1001.
Pubmed: 9473059
Lau ST, Tanner ME: Mechanism and active site residues of GDP-fucose synthase. J Am Chem Soc. 2008 Dec 24;130(51):17593-602. doi: 10.1021/ja807799k.
Pubmed: 19053199
Lee WH, Chin YW, Han NS, Kim MD, Seo JH: Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol. 2011 Aug;91(4):967-76. doi: 10.1007/s00253-011-3271-x. Epub 2011 May 3.
Pubmed: 21538115
Lee WH, Shin SY, Kim MD, Han NS, Seo JH: Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Appl Microbiol Biotechnol. 2012 Mar;93(6):2327-34. doi: 10.1007/s00253-011-3776-3. Epub 2011 Dec 13.
Pubmed: 22159740
Miles JS, Guest JR: Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene. 1984 Dec;32(1-2):41-8. doi: 10.1016/0378-1119(84)90030-1.
Pubmed: 6397402
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
De Reuse H, Danchin A: The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. J Bacteriol. 1988 Sep;170(9):3827-37. doi: 10.1128/jb.170.9.3827-3837.1988.
Pubmed: 2457575
De Reuse H, Roy A, Danchin A: Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene. 1985;35(1-2):199-207. doi: 10.1016/0378-1119(85)90172-6.
Pubmed: 2411636
Saffen DW, Presper KA, Doering TL, Roseman S: Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and crr genes. J Biol Chem. 1987 Nov 25;262(33):16241-53.
Pubmed: 2960675
Erni B, Zanolari B, Kocher HP: The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem. 1987 Apr 15;262(11):5238-47.
Pubmed: 2951378
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Aoyama K, Haase AM, Reeves PR: Evidence for effect of random genetic drift on G+C content after lateral transfer of fucose pathway genes to Escherichia coli K-12. Mol Biol Evol. 1994 Nov;11(6):829-38. doi: 10.1093/oxfordjournals.molbev.a040166.
Pubmed: 7815923
Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR: Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol. 1996 Aug;178(16):4885-93. doi: 10.1128/jb.178.16.4885-4893.1996.
Pubmed: 8759852
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings