Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fucose and Rhamnose Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-27
Last Updated: 2019-08-13
In E. coli, L-fucose and L-rhamnose are metabolized through parallel pathways. The pathways converge after their corresponding aldolase reactions yielding the same products: lactaldehye. Proton symporter can facilitate the import of alpha-L-rhamnopyranose, methylpentose and beta-L-rhamnopyranose into cell for further metabolism, which allow E.coli to grow with carbon and energy. For alpha-L-rhamnopyranose, it is isomerized by a l-rhamnose mutarotase resulting in a beta-L-rhamnopyranose which is then isomerized into a keto-L-rhamnulose by a l-rhamnose isomerase. The keto-L-rhamnulose spontaneously changes into a L-rhamnulofuranose which is phosphorylated by a rhamnulokinase resulting in a L-rhamnulose 1-phosphate. This compound reacts with a rhamnulose-1-phosphate aldolase resulting in a dihydroxyacetone phosphate and a lactaldehyde. For beta-L-rhamnopyranose, it is isomerized by a L-fucose mutarotase resulting in a alpha-L-fucopyranose. This compound is then isomerized by an L-fucose isomerase resulting in a L-fuculose which in turn gets phosphorylated into an L-fuculose 1-phosphate through an L-fuculokinase. The compound L-fuculose 1-phosphate reacts with an L-fuculose phosphate aldolase through a dihydroxyacetone phosphate and a lactaldehyde. Two pathways can both be used for degrading L-lactaldehyde, which the aerobic pathway facilitates the conversion from L-lactic acid to pyruvic acid via L-lactate dehydrogenase, and the anaerobic pathway facilitates conversion from lactaldehyde to propane-1,2-diol via lactaldehyde reductase. Under aerobic conditions, L-lactaldehyde is oxidized in two steps to pyruvate, thereby channeling all the carbons from fucose or rhamnose into central metabolic pathways. Under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol, which is secreted into the environment.
References
Fucose and Rhamnose Degradation References
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Petit E, LaTouf WG, Coppi MV, Warnick TA, Currie D, Romashko I, Deshpande S, Haas K, Alvelo-Maurosa JG, Wardman C, Schnell DJ, Leschine SB, Blanchard JL: Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. PLoS One. 2013;8(1):e54337. doi: 10.1371/journal.pone.0054337. Epub 2013 Jan 28.
Pubmed: 23382892
Wen L, Zang L, Huang K, Li S, Wang R, Wang PG: Efficient enzymatic synthesis of L-rhamnulose and L-fuculose. Bioorg Med Chem Lett. 2016 Feb 1;26(3):969-972. doi: 10.1016/j.bmcl.2015.12.051. Epub 2015 Dec 17.
Pubmed: 26778148
Tate CG, Muiry JA, Henderson PJ: Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1992 Apr 5;267(10):6923-32.
Pubmed: 1551902
Garcia-Martin C, Baldoma L, Badia J, Aguilar J: Nucleotide sequence of the rhaR-sodA interval specifying rhaT in Escherichia coli. J Gen Microbiol. 1992 Jun;138(6):1109-16. doi: 10.1099/00221287-138-6-1109.
Pubmed: 1339463
Via P, Badia J, Baldoma L, Obradors N, Aguilar J: Transcriptional regulation of the Escherichia coli rhaT gene. Microbiology. 1996 Jul;142 ( Pt 7):1833-40. doi: 10.1099/13500872-142-7-1833.
Pubmed: 8757746
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Moralejo P, Egan SM, Hidalgo E, Aguilar J: Sequencing and characterization of a gene cluster encoding the enzymes for L-rhamnose metabolism in Escherichia coli. J Bacteriol. 1993 Sep;175(17):5585-94. doi: 10.1128/jb.175.17.5585-5594.1993.
Pubmed: 8396120
Egan SM, Schleif RF: A regulatory cascade in the induction of rhaBAD. J Mol Biol. 1993 Nov 5;234(1):87-98. doi: 10.1006/jmbi.1993.1565.
Pubmed: 8230210
Holcroft CC, Egan SM: Roles of cyclic AMP receptor protein and the carboxyl-terminal domain of the alpha subunit in transcription activation of the Escherichia coli rhaBAD operon. J Bacteriol. 2000 Jun;182(12):3529-35. doi: 10.1128/jb.182.12.3529-3535.2000.
Pubmed: 10852886
Chen YM, Lu Z, Lin EC: Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol. J Bacteriol. 1989 Nov;171(11):6097-105. doi: 10.1128/jb.171.11.6097-6105.1989.
Pubmed: 2553671
Lu Z, Lin EC: The nucleotide sequence of Escherichia coli genes for L-fucose dissimilation. Nucleic Acids Res. 1989 Jun 26;17(12):4883-4. doi: 10.1093/nar/17.12.4883.
Pubmed: 2664711
Seemann JE, Schulz GE: Structure and mechanism of L-fucose isomerase from Escherichia coli. J Mol Biol. 1997 Oct 17;273(1):256-68. doi: 10.1006/jmbi.1997.1280.
Pubmed: 9367760
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings