
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Quorum sensing - DPD and Autoinducer-2 Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-04-03
Last Updated: 2025-03-03
Bacterial Autoinducer-2 (AI-2) and its precursor, 4,5-dihydroxy-2,3-pentanedione (DPD), mediate the quorum sensing 2 system. DPD is synthesized from S-ribosylhomocysteine (SRH) by the LuxS enzyme, which is found in both E. coli and S. typhimurium. In E. coli and most pathogenic bacteria, DPD undergoes spontaneous transformations, including cyclization to form (2R,4S)-2-methyl-2,4-dihydroxydihydrofuran-3-one and hydration to the final autoinducer, (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (AI-2). This product is then released from the cell through the AI-2 transporter (TqsA). As the level of AI-2 increases, other cells detect it and import it through the autoinducer-2 ABC transporter (LsrACDB). Inside the cells, AI-2 is degraded by phosphorylation, followed by isomerization to P-HPD. Finally, the acetyl group of P-HPD is transferred to coenzyme A, and dihydroxyacetone phosphate is released. Both DPD and AI-2 play critical roles in quorum sensing, allowing bacteria to coordinate gene expression in response to population density.
References
Quorum sensing - DPD and Autoinducer-2 Biosynthesis References
Marques JC, Oh IK, Ly DC, Lamosa P, Ventura MR, Miller ST, Xavier KB: LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14235-40. doi: 10.1073/pnas.1408691111. Epub 2014 Sep 15.
Pubmed: 25225400
Li J, Attila C, Wang L, Wood TK, Valdes JJ, Bentley WE: Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol. 2007 Aug;189(16):6011-20. doi: 10.1128/JB.00014-07. Epub 2007 Jun 8.
Pubmed: 17557827
Hardie KR, Heurlier K: Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol. 2008 Aug;6(8):635-43. doi: 10.1038/nrmicro1916. Epub 2008 Jun 9.
Pubmed: 18536728
Cornell KA, Riscoe MK: Cloning and expression of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. Biochim Biophys Acta. 1998 Mar 4;1396(1):8-14. doi: 10.1016/s0167-4781(97)00169-3.
Pubmed: 9524204
Cornell KA, Swarts WE, Barry RD, Riscoe MK: Characterization of recombinant Eschericha coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: analysis of enzymatic activity and substrate specificity. Biochem Biophys Res Commun. 1996 Nov 21;228(3):724-32. doi: 10.1006/bbrc.1996.1723.
Pubmed: 8941345
Wurgler SM, Richardson CC: Structure and regulation of the gene for dGTP triphosphohydrolase from Escherichia coli. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2740-4. doi: 10.1073/pnas.87.7.2740.
Pubmed: 2157212
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Xavier KB, Bassler BL: Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol. 2005 Jan;187(1):238-48. doi: 10.1128/JB.187.1.238-248.2005.
Pubmed: 15601708
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csorgo B, Posfai G, Weinstock GM, Blattner FR: The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol. 2008 Apr;190(7):2597-606. doi: 10.1128/JB.01695-07. Epub 2008 Feb 1.
Pubmed: 18245285
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings