Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Propanoate Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-06-09
Last Updated: 2019-08-13
Starting from L-threonine, this compound is deaminated through a threonine deaminase resulting in a hydrogen ion, a water molecule and a (2z)-2-aminobut-2-enoate. The latter compound then isomerizes to a 2-iminobutanoate, This compound then reacts spontaneously with hydrogen ion and a water molecule resulting in a ammonium and a 2-Ketobutyric acid. The latter compound interacts with CoA through a pyruvate formate-lyase / 2-ketobutyrate formate-lyase resulting in a formic acid and a propionyl-CoA.
Propionyl-CoA can then be processed either into a 2-methylcitric acid or into a propanoyl phosphate. Propionyl-CoA interacts with oxalacetic acid and a water molecule through a 2-methylcitrate synthase resulting in a hydrogen ion, a CoA and a 2-Methylcitric acid.The latter compound is dehydrated through a 2-methylcitrate dehydratase resulting in a water molecule and cis-2-methylaconitate. The latter compound is then dehydrated by a bifunctional aconitate hydratase 2 and 2-methylisocitrate dehydratase resulting in a water molecule and methylisocitric acid. The latter compound is then processed by 2-methylisocitrate lyase resulting in a release of succinic acid and pyruvic acid. Succinic acid can then interact with a propionyl-CoA through a propionyl-CoA:succinate CoA transferase resulting in a propionic acid and a succinyl CoA. Succinyl-CoA is then isomerized through a methylmalonyl-CoA mutase resulting in a methylmalonyl-CoA. This compound is then decarboxylated through a methylmalonyl-CoA decarboxylase resulting in a release of Carbon dioxide and Propionyl-CoA. Propionyl-CoA interacts with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. Propionyl-CoA can react with a phosphate through a phosphate acetyltransferase / phosphate propionyltransferase resulting in a CoA and a propanoyl phosphate. The latter compound is then dephosphorylated through a ADP driven acetate kinase/propionate kinase protein complex resulting in an ATP and Propionic acid. Propionic acid can be processed by a reaction with CoA through a ATP-driven propionyl-CoA synthetase resulting in a pyrophosphate, an AMP and a propionyl-CoA.
References
Propanoate Metabolism References
Haller T, Buckel T, Retey J, Gerlt JA: Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry. 2000 Apr 25;39(16):4622-9.
Pubmed: 10769117
Lopes JM, Lawther RP: Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon. Gene. 1989;76(2):255-69. doi: 10.1016/0378-1119(89)90166-2.
Pubmed: 2473940
Cox JL, Cox BJ, Fidanza V, Calhoun DH: The complete nucleotide sequence of the ilvGMEDA cluster of Escherichia coli K-12. Gene. 1987;56(2-3):185-98. doi: 10.1016/0378-1119(87)90136-3.
Pubmed: 3315862
Lawther RP, Wek RC, Lopes JM, Pereira R, Taillon BE, Hatfield GW: The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res. 1987 Mar 11;15(5):2137-55. doi: 10.1093/nar/15.5.2137.
Pubmed: 3550695
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G 3rd, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL: Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic Acids Res. 2006 Jan 5;34(1):1-9. doi: 10.1093/nar/gkj405. Print 2006.
Pubmed: 16397293
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Rodel W, Plaga W, Frank R, Knappe J: Primary structures of Escherichia coli pyruvate formate-lyase and pyruvate-formate-lyase-activating enzyme deduced from the DNA nucleotide sequences. Eur J Biochem. 1988 Oct 15;177(1):153-8. doi: 10.1111/j.1432-1033.1988.tb14356.x.
Pubmed: 3053170
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Kakuda H, Hosono K, Shiroishi K, Ichihara S: Identification and characterization of the ackA (acetate kinase A)-pta (phosphotransacetylase) operon and complementation analysis of acetate utilization by an ackA-pta deletion mutant of Escherichia coli. J Biochem. 1994 Oct;116(4):916-22. doi: 10.1093/oxfordjournals.jbchem.a124616.
Pubmed: 7883769
Chang DE, Shin S, Rhee JS, Pan JG: Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol. 1999 Nov;181(21):6656-63.
Pubmed: 10542166
Matsuyama A, Yamamoto-Otake H, Hewitt J, MacGillivray RT, Nakano E: Nucleotide sequence of the phosphotransacetylase gene of Escherichia coli strain K12. Biochim Biophys Acta. 1994 Oct 18;1219(2):559-62. doi: 10.1016/0167-4781(94)90089-2.
Pubmed: 7918659
Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csorgo B, Posfai G, Weinstock GM, Blattner FR: The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol. 2008 Apr;190(7):2597-606. doi: 10.1128/JB.01695-07. Epub 2008 Feb 1.
Pubmed: 18245285
Nakao T, Yamato I, Anraku Y: Nucleotide sequence of putP, the proline carrier gene of Escherichia coli K12. Mol Gen Genet. 1987 Jun;208(1-2):70-5. doi: 10.1007/bf00330424.
Pubmed: 3302614
Nelson K, Selander RK: Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli. J Bacteriol. 1992 Nov;174(21):6886-95. doi: 10.1128/jb.174.21.6886-6895.1992.
Pubmed: 1400239
Kumari S, Tishel R, Eisenbach M, Wolfe AJ: Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol. 1995 May;177(10):2878-86. doi: 10.1128/jb.177.10.2878-2886.1995.
Pubmed: 7751300
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Patton AJ, Hough DW, Towner P, Danson MJ: Does Escherichia coli possess a second citrate synthase gene? Eur J Biochem. 1993 May 15;214(1):75-81. doi: 10.1111/j.1432-1033.1993.tb17898.x.
Pubmed: 8508809
Blank L, Green J, Guest JR: AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology. 2002 Jan;148(Pt 1):133-46. doi: 10.1099/00221287-148-1-133.
Pubmed: 11782506
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings