Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Operon: 16S Ribosomal RNA Modification & Chaperone
Escherichia coli
Category:
Protein Pathway
Sub-Categories:
Transport/Degradation
Cellular Response
Created: 2015-09-08
Last Updated: 2019-08-16
The surA-pdxA-rsmA-apaGH operon in E. coli contains five genes that are involved in various functions in the cell. DNA-binding protein Fis can bind to the promoter of this operon, allowing RNAP to bind and transcribe the operon. It can also bind to a promoter upstream of pdxA, and this promoter allows for transcription of the pdxA-rsmA transcription unit.
The first gene, surA, encodes a chaperone protein that is involved in the proper folding of outer membrane proteins, and is essential for the formation of the bacteria's pilus.
The second gene, pdxA, encodes for 4-hydroxythreonine-4-phosphate dehydrogenase, an envyme involved in the biosynthesis of pyridoxal 5'-phosphate.
The third gene, rsmA, encodes ribosomal RNA small subunit methyltransfeerase A, a protein that methylates 16S rRNA, and may be important in the formation of 30S subunits of rRNA.
The fourth gene, apaG, produces a protein with currently unknown function.
The final gene, apaH, produces diadenosine tetraphosphatase, which hydrolyzes diadenosine tetraphosphatase into two molecules of ADP.
References
Operon: 16S Ribosomal RNA Modification & Chaperone References
Xu X, Wang S, Hu YX, McKay DB: The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J Mol Biol. 2007 Oct 19;373(2):367-81. doi: 10.1016/j.jmb.2007.07.069. Epub 2007 Aug 15.
Pubmed: 17825319
Roa BB, Connolly DM, Winkler ME: Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol. 1989 Sep;171(9):4767-77. doi: 10.1128/jb.171.9.4767-4777.1989.
Pubmed: 2670894
Tormo A, Almiron M, Kolter R: surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol. 1990 Aug;172(8):4339-47. doi: 10.1128/jb.172.8.4339-4347.1990.
Pubmed: 2165476
Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A: Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305-8. doi: 10.1093/nar/20.13.3305.
Pubmed: 1630901
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
van Buul CP, van Knippenberg PH: Nucleotide sequence of the ksgA gene of Escherichia coli: comparison of methyltransferases effecting dimethylation of adenosine in ribosomal RNA. Gene. 1985;38(1-3):65-72. doi: 10.1016/0378-1119(85)90204-5.
Pubmed: 3905517
Blanchin-Roland S, Blanquet S, Schmitter JM, Fayat G: The gene for Escherichia coli diadenosine tetraphosphatase is located immediately clockwise to folA and forms an operon with ksgA. Mol Gen Genet. 1986 Dec;205(3):515-22. doi: 10.1007/bf00338091.
Pubmed: 3031429
Johnson RC, Ball CA, Pfeffer D, Simon MI: Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc Natl Acad Sci U S A. 1988 May;85(10):3484-8. doi: 10.1073/pnas.85.10.3484.
Pubmed: 2835774
Koch C, Vandekerckhove J, Kahmann R: Escherichia coli host factor for site-specific DNA inversion: cloning and characterization of the fis gene. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4237-41. doi: 10.1073/pnas.85.12.4237.
Pubmed: 2837762
Ball CA, Osuna R, Ferguson KC, Johnson RC: Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol. 1992 Dec;174(24):8043-56. doi: 10.1128/jb.174.24.8043-8056.1992.
Pubmed: 1459953
Highlighted elements will appear in red.
Highlight Compounds
No Compounds Present
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
No Compounds Present
Visualize Protein Data
Settings