Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
N-Oxide Electron Transfer
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-09-09
Last Updated: 2019-09-12
The pathway can start in various spots. First step in this case starts with NADH interacting with a menaquinone oxidoreductase resulting in the release of a NADH and a hydrogen Ion, at the same time in the inner membrane a menaquinone interacts with 2 electrons and 2 hydrogen ions thus releasing a menaquinol. This allows for 4 hydrogen ions to be transferred from the cytosol to the periplasmic space. The menaquinol then interacts with a trimethylamine N-oxide reductase resulting in the release of 2 hydrogen ion and 2 electrons. At the same time trimethylamine N-oxide and 3 hydrogen ions interact with the enzyme trimethylamine N-oxide reductase resulting in the release of a trimethylamine and a water molecule, this reaction happening in the periplasmic space.
The second set of reactions starts with a hydrogen interacting with a menaquinone oxidoreductase resulting in the release of two electrons being released into the inner membrane which then react with with 2 hydrogen ion and a menaquinone to produce a menaquinol. This menaquinol then reacts with a trimethylamine N-oxide reductase following the same steps as mentioned before.
The third set of reactions starts with with formate interacting with a formate dehydrogenase-O resulting in a release of carbon dioxide and a hydrogen ion, this releases 2 electrons that interact with a menaquinone and two hydrogen ions. This releases a menaquinol which then reacts with a trimethylamine N-oxide reductase following the same steps as mentioned before
References
N-Oxide Electron Transfer References
Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA: Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J Bacteriol. 1995 Dec;177(24):7141-9.
Pubmed: 8522521
Abaibou H, Giordano G, Mandrand-Berthelot MA: Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate. Microbiology. 1997 Aug;143 ( Pt 8):2657-64. doi: 10.1099/00221287-143-8-2657.
Pubmed: 9274019
Ansaldi M, Theraulaz L, Baraquet C, Panis G, Mejean V: Aerobic TMAO respiration in Escherichia coli. Mol Microbiol. 2007 Oct;66(2):484-94. doi: 10.1111/j.1365-2958.2007.05936.x. Epub 2007 Sep 10.
Pubmed: 17850256
Barrett EL, Kwan HS: Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 1985;39:131-49. doi: 10.1146/annurev.mi.39.100185.001023.
Pubmed: 3904597
Berg BL, Stewart V: Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. Genetics. 1990 Aug;125(4):691-702.
Pubmed: 2168848
Cox JC, Madigan MT, Favinger JL, Gest H: Redox mechanisms in "oxidant-dependent" hexose fermentation by Rhodopseudomonas capsulata. Arch Biochem Biophys. 1980 Oct 1;204(1):10-7.
Pubmed: 7000002
Gon S, Patte JC, Mejean V, Iobbi-Nivol C: The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. J Bacteriol. 2000 Oct;182(20):5779-86.
Pubmed: 11004177
Jormakka M, Tornroth S, Byrne B, Iwata S: Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science. 2002 Mar 8;295(5561):1863-8. doi: 10.1126/science.1068186.
Pubmed: 11884747
McCrindle SL, Kappler U, McEwan AG: Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol. 2005;50:147-98. doi: 10.1016/S0065-2911(05)50004-3.
Pubmed: 16221580
Shimokawa O, Ishimoto M: Purification and some properties of inducible tertiary amine N-oxide reductase from Escherichia coli. J Biochem. 1979 Dec;86(6):1709-17.
Pubmed: 393699
Takagi M, Tsuchiya T, Ishimoto M: Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli. J Bacteriol. 1981 Dec;148(3):762-8.
Pubmed: 7031034
Wang H, Gunsalus RP: Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. J Bacteriol. 2003 Sep;185(17):5076-85.
Pubmed: 12923080
Wissenbach U, Kroger A, Unden G: The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol. 1990;154(1):60-6.
Pubmed: 2204318
Wissenbach U, Ternes D, Unden G: An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol. 1992;158(1):68-73.
Pubmed: 1444716
Jones RW: The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli. Biochem J. 1980 May 15;188(2):345-50.
Pubmed: 6249272
Laurinavichene TV, Tsygankov AA: H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett. 2001 Aug 7;202(1):121-4.
Pubmed: 11506918
Sawers RG, Ballantine SP, Boxer DH: Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol. 1985 Dec;164(3):1324-31.
Pubmed: 3905769
Simon J, van Spanning RJ, Richardson DJ: The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim Biophys Acta. 2008 Dec;1777(12):1480-90. doi: 10.1016/j.bbabio.2008.09.008. Epub 2008 Sep 30.
Pubmed: 18930017
Unden G, Bongaerts J: Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997 Jul 4;1320(3):217-34.
Pubmed: 9230919
Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC: Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Structure. 2013 Jan 8;21(1):184-190. doi: 10.1016/j.str.2012.11.010. Epub 2012 Dec 20.
Pubmed: 23260654
Wulff P, Day CC, Sargent F, Armstrong FA: How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6606-11. doi: 10.1073/pnas.1322393111. Epub 2014 Apr 8.
Pubmed: 24715724
Yamamoto I, Ishimoto M: Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions. J Biochem. 1978 Sep;84(3):673-9.
Pubmed: 363703
Bogachev AV, Murtazina RA, Skulachev VP: H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol. 1996 Nov;178(21):6233-7.
Pubmed: 8892824
Wikstrom M, Hummer G: Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4431-6. doi: 10.1073/pnas.1120949109. Epub 2012 Mar 5.
Pubmed: 22392981
Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H: The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol. 1993 Sep 5;233(1):109-22. doi: 10.1006/jmbi.1993.1488.
Pubmed: 7690854
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Zambrano MM, Kolter R: Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol. 1993 Sep;175(17):5642-7. doi: 10.1128/jb.175.17.5642-5647.1993.
Pubmed: 8366049
Pruss BM, Nelms JM, Park C, Wolfe AJ: Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol. 1994 Apr;176(8):2143-50. doi: 10.1128/jb.176.8.2143-2150.1994.
Pubmed: 8157582
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings