 
        Loading Pathway...
Error: Pathway image not found.
Hide 
    Pathway Description
      Tryptophan Metabolism II
Escherichia coli
            Category:
                Metabolite Pathway
                Sub-Category:
                Metabolic
            Created: 2015-09-14
          Last Updated: 2025-07-30
        
          The biosynthesis of L-tryptophan begins with L-glutamine interacting with a chorismate through a anthranilate synthase which results in a L-glutamic acid, a pyruvic acid, a hydrogen ion and a 2-aminobenzoic acid. The aminobenzoic acid interacts with a phosphoribosyl pyrophosphate through an anthranilate synthase component II resulting in a pyrophosphate and a N-(5-phosphoribosyl)-anthranilate. The latter compound is then metabolized by an indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in a 1-(o-carboxyphenylamino)-1-deoxyribulose 5'-phosphate. This compound then interacts with a hydrogen ion through a indole-3-glycerol phosphate synthase / phosphoribosylanthranilate isomerase resulting in the release of carbon dioxide, a water molecule and a  (1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate. The latter compound then interacts with a D-glyceraldehyde 3-phosphate and an Indole. The indole interacts with an L-serine through a tryptophan synthase, β subunit dimer resulting in a water molecule and an L-tryptophan.
The metabolism of L-tryptophan starts with L-tryptophan being dehydrogenated by a tryptophanase / L-cysteine desulfhydrase resulting in the release of a hydrogen ion, an Indole and a 2-aminoacrylic acid. The latter compound is isomerized into a 2-iminopropanoate. This compound then interacts with a water molecule and a hydrogen ion  spontaneously resulting in the release of an Ammonium and a pyruvic acid. The pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an Acetyl-CoA
        
      References
      
      Tryptophan Metabolism II References
Hommel U, Eberhard M, Kirschner K: Phosphoribosyl anthranilate isomerase catalyzes a reversible amadori reaction. Biochemistry. 1995 Apr 25;34(16):5429-39.
                  Pubmed: 7727401
              Horowitz H, Platt T: Initiation in vivo at the internal trp p2 promoter of Escherichia coli. J Biol Chem. 1983 Jul 10;258(13):7890-3.
                  Pubmed: 6305961
              Lane AN, Kirschner K: Mechanism of the physiological reaction catalyzed by tryptophan synthase from Escherichia coli. Biochemistry. 1991 Jan 15;30(2):479-84.
                  Pubmed: 1899028
              Ogawa W, Kim YM, Mizushima T, Tsuchiya T: Cloning and expression of the gene for the Na+-coupled serine transporter from Escherichia coli and characteristics of the transporter. J Bacteriol. 1998 Dec;180(24):6749-52.
                  Pubmed: 9852024
              Xie G, Keyhani NO, Bonner CA, Jensen RA: Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev. 2003 Sep;67(3):303-42, table of contents.
                  Pubmed: 12966138
              Yanofsky C: The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet. 2004 Aug;20(8):367-74. doi: 10.1016/j.tig.2004.06.007.
                  Pubmed: 15262409
              Yanofsky C: RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria. RNA. 2007 Aug;13(8):1141-54. doi: 10.1261/rna.620507. Epub 2007 Jun 29.
                  Pubmed: 17601995
              Yanofsky C, Horn V, Gollnick P: Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol. 1991 Oct;173(19):6009-17.
                  Pubmed: 1917834
              Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H, VanCleemput M, Wu AM: The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 1981 Dec 21;9(24):6647-68. doi: 10.1093/nar/9.24.6647.
                  Pubmed: 7038627
              Nichols BP, van Cleemput M, Yanofsky C: Nucleotide sequence of Escherichia coli trpE. Anthranilate synthetase component I contains no tryptophan residues. J Mol Biol. 1981 Feb 15;146(1):45-54. doi: 10.1016/0022-2836(81)90365-x.
                  Pubmed: 7021857
              Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
                  Pubmed: 9097039
              Horowitz H, Christie GE, Platt T: Nucleotide sequence of the trpD gene, encoding anthranilate synthetase component II of Escherichia coli. J Mol Biol. 1982 Apr 5;156(2):245-56. doi: 10.1016/0022-2836(82)90326-6.
                  Pubmed: 6283099
              Zhao GP, Somerville RL: Genetic and biochemical characterization of the trpB8 mutation of Escherichia coli tryptophan synthase. An amino acid switch at the sharp turn of the trypsin-sensitive "hinge" region diminishes substrate binding and alters solubility. J Biol Chem. 1992 Jan 5;267(1):526-41.
                  Pubmed: 1309752
              Milkman R, Bridges MM: Molecular evolution of the Escherichia coli chromosome. IV. Sequence comparisons. Genetics. 1993 Mar;133(3):455-68.
                  Pubmed: 8095913
              Deeley MC, Yanofsky C: Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol. 1981 Sep;147(3):787-96.
                  Pubmed: 6268608
              Tokushige M, Tsujimoto N, Oda T, Honda T, Yumoto N, Ito S, Yamamoto M, Kim EH, Hiragi Y: Role of cysteine residues in tryptophanase for monovalent cation-induced activation. Biochimie. 1989 Jun;71(6):711-20. doi: 10.1016/0300-9084(89)90087-4.
                  Pubmed: 2502187
              Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
                  Pubmed: 7686882
              Christie GE, Platt T: Gene structure in the tryptophan operon of Escherichia coli. Nucleotide sequence of trpC and the flanking intercistronic regions. J Mol Biol. 1980 Oct 5;142(4):519-30. doi: 10.1016/0022-2836(80)90261-2.
                  Pubmed: 7007653
              Horowitz H, Van Arsdell J, Platt T: Nucleotide sequence of the trpD and trpC genes of Salmonella typhimurium. J Mol Biol. 1983 Oct 5;169(4):775-97. doi: 10.1016/s0022-2836(83)80136-3.
                  Pubmed: 6355484
              Guest JR, Drapeau GR, Carlton BC, Yanofsky C: The amino acid sequence of the A protein (alpha subunit) of the tryptophan synthetase of Escherichia coli. J Biol Chem. 1967 Nov 25;242(22):5442-6.
                  Pubmed: 4863752
              Nichols BP, Yanofsky C: Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: an evolutionary comparison. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5244-8. doi: 10.1073/pnas.76.10.5244.
                  Pubmed: 388433
              Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings