Loading Pathway...
Error: Pathway image not found.
Hide 
    Pathway Description
      Oleic Acid Oxidation
Escherichia coli
            Category:
                Metabolite Pathway
                Sub-Category:
                Metabolic
            Created: 2015-09-30
          Last Updated: 2025-09-12
        
          The process of oleic acid B-oxidation starts with a 2-trans,5-cis-tetradecadienoyl-CoA that can be either be processed by an enoyl-CoA hydratase by interacting with a water molecules resulting in a 3-hydroxy-5-cis-tetradecenoyl-CoA, which can be oxidized in the fatty acid beta-oxidation. On the other hand 2-trans,5-cis-tetradecadienoyl-CoA can become a 3-trans,5-cis-tetradecadienoyl-CoA through a isomerase.  This results interact with a water molecule through a acyl-CoA thioesterase resulting in a hydrogen ion, a coenzyme A and a 3,5-tetradecadienoate
        
      References
      
      Oleic Acid Oxidation References
Nie L, Ren Y, Schulz H: Identification and characterization of Escherichia coli thioesterase III that functions in fatty acid beta-oxidation. Biochemistry. 2008 Jul 22;47(29):7744-51. doi: 10.1021/bi800595f. Epub 2008 Jun 25.
                  Pubmed: 18576672
              Ren Y, Aguirre J, Ntamack AG, Chu C, Schulz H: An alternative pathway of oleate beta-oxidation in Escherichia coli involving the hydrolysis of a dead end intermediate by a thioesterase. J Biol Chem. 2004 Mar 19;279(12):11042-50. doi: 10.1074/jbc.M310032200. Epub 2004 Jan 5.
                  Pubmed: 14707139
              Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP, Denamur E: Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009 Jan;5(1):e1000344. doi: 10.1371/journal.pgen.1000344. Epub 2009 Jan 23.
                  Pubmed: 19165319
              Feng Y, Cronan JE: A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). J Bacteriol. 2009 Oct;191(20):6320-8. doi: 10.1128/JB.00835-09. Epub 2009 Aug 14.
                  Pubmed: 19684132
              Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
                  Pubmed: 9278503
              Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
                  Pubmed: 16738553
              This pathway was propagated using PathWhiz - 
                  Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
              
              Propagated from SMP0002039
        Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings