Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 3
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-07
Last Updated: 2024-11-04
The biosynthesis of a enterobacterial common antigen can begin with a di-trans,octa-cis-undecaprenyl phosphate interacts with a Uridine diphosphate-N-acetylglucosamine through undecaprenyl-phosphate α-N-acetylglucosaminyl transferase resulting in a N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol and a Uridine 5'-monophosphate. The N-acetyl-α-D-glucosaminyl-diphospho-ditrans,octacis-undecaprenol then reacts with an UDP-ManNAcA from the Amino sugar and nucleotide sugar metabolism pathway. This reaction is metabolized by a UDP-N-acetyl-D-mannosaminuronic acid transferase resulting in a uridine 5' diphosphate, a hydrogen ion and a Undecaprenyl N-acetyl-glucosaminyl-N-acetyl-mannosaminuronate-4-acetamido-4,6-dideoxy-D-galactose pyrophosphate. Glucose 1 phosphate can be metabolize by interacting with a hydrogen ion and a thymidine 5-triphosphate by either reacting with a dTDP-glucose pyrophosphorylase or a dTDP-glucose pyrophosphorylase 2 resulting in the release of a pyrophosphate and a dTDP-D-glucose. The latter compound is then dehydrated through an dTDP-glucose 4,6-dehydratase 2 resulting in water and dTDP-4-dehydro-6-deoxy-D-glucose. The latter compound interacts with L-glutamic acid through a dTDP-4-dehydro-6-deoxy-D-glucose transaminase resulting in the release of oxoglutaric acid and dTDP-thomosamine. The latter compound interacts with acetyl-coa through a dTDP-fucosamine acetyltransferase resulting in a Coenzyme A, a hydrogen Ion and a TDP-Fuc4NAc. Undecaprenyl N-acetyl-glucosaminyl-N-acetyl-mannosaminuronate-4-acetamido-4,6-dideoxy-D-galactose pyrophosphate then interacts with a TDP--Fuc4NAc through a 4-acetamido-4,6-dideoxy-D-galactose transferase resulting in a hydrogen ion, a dTDP and a Undecaprenyl N-acetyl-glucosaminyl-N-acetyl-mannosaminuronate-4-acetamido-4,6-dideoxy-D-galactose pyrophosphate. This compound is then transported through a protein wzxE into the periplasmic space so that it can be incorporated into the outer membrane.
References
Secondary Metabolites: Enterobacterial Common Antigen Biosynthesis 3 References
Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ: Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli. J Bacteriol. 1998 Nov;180(22):5875-84.
Pubmed: 9811644
Rick PD, Barr K, Sankaran K, Kajimura J, Rush JS, Waechter CJ: Evidence that the wzxE gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. J Biol Chem. 2003 May 9;278(19):16534-42. doi: 10.1074/jbc.M301750200. Epub 2003 Mar 5.
Pubmed: 12621029
Daniels DL, Plunkett G 3rd, Burland V, Blattner FR: Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771-8. doi: 10.1126/science.1379743.
Pubmed: 1379743
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Barr K, Rick PD: Physical map location of the rffC and rffA genes of Escherichia coli. J Bacteriol. 1993 Sep;175(17):5738-9. doi: 10.1128/jb.175.17.5738-5739.1993.
Pubmed: 8366065
Rahman A, Barr K, Rick PD: Identification of the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase involved in synthesis of enterobacterial common antigen in Escherichia coli K-12. J Bacteriol. 2001 Nov;183(22):6509-16. doi: 10.1128/JB.183.22.6509-6516.2001.
Pubmed: 11673418
Ohta M, Ina K, Kusuzaki K, Kido N, Arakawa Y, Kato N: Cloning and expression of the rfe-rff gene cluster of Escherichia coli. Mol Microbiol. 1991 Aug;5(8):1853-62. doi: 10.1111/j.1365-2958.1991.tb00809.x.
Pubmed: 1722555
Meier-Dieter U, Barr K, Starman R, Hatch L, Rick PD: Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster. J Biol Chem. 1992 Jan 15;267(2):746-53.
Pubmed: 1730666
Anderson MS, Eveland SS, Price NP: Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate:N-acetylhexosamine-1-phosphate transferase family. FEMS Microbiol Lett. 2000 Oct 15;191(2):169-75. doi: 10.1111/j.1574-6968.2000.tb09335.x.
Pubmed: 11024259
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G 3rd, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL: Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic Acids Res. 2006 Jan 5;34(1):1-9. doi: 10.1093/nar/gkj405. Print 2006.
Pubmed: 16397293
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings