
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Superoxide Radicals Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-08
Last Updated: 2025-01-24
In gram-negative bacteria, cytoplasmic and periplasmic isozymes of superoxide dismutase (SOD) is their defense system against superoxide anion (O2-). In E.coli, there are several SOD isozymes which are manganese-cofactored (MnSOD), iron-cofactored (FeSOD) and copper, zinc-cofactored (CuZnSOD) in perplasm, and they can be generated by autooxidation of dihydromenaquinone in the cytoplasmic membrane. In E.coli, MnSOD and FeSOD have similar structure and kinetic, but CuZnSOD is monomeric. FeSOD is the only SOD in E.coli under anaerobic conditions. MnSOD is induced by environmental stress condition as well as aerobic growth. CuZnSOD is induced in stationary phase. SOD will catalyze the superoxide anion to form oxygen and H2O2. With increasing concentration of H2O2, catalase such as cryptic adenine deaminase is induced in E.coli to degrade H2O2 into water and oxygen.
References
Superoxide Radicals Degradation References
Battistoni A, Rotilio G: Isolation of an active and heat-stable monomeric form of Cu,Zn superoxide dismutase from the periplasmic space of Escherichia coli. FEBS Lett. 1995 Oct 30;374(2):199-202.
Pubmed: 7589534
Petersen C, Moller LB, Valentin-Hansen P: The cryptic adenine deaminase gene of Escherichia coli. Silencing by the nucleoid-associated DNA-binding protein, H-NS, and activation by insertion elements. J Biol Chem. 2002 Aug 30;277(35):31373-80. doi: 10.1074/jbc.M204268200. Epub 2002 Jun 19.
Pubmed: 12077137
Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
Pubmed: 7686882
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Imlay KR, Imlay JA: Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J Bacteriol. 1996 May;178(9):2564-71. doi: 10.1128/jb.178.9.2564-2571.1996.
Pubmed: 8626323
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Carlioz A, Ludwig ML, Stallings WC, Fee JA, Steinman HM, Touati D: Iron superoxide dismutase. Nucleotide sequence of the gene from Escherichia coli K12 and correlations with crystal structures. J Biol Chem. 1988 Jan 25;263(3):1555-62.
Pubmed: 2447093
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Garcia-Martin C, Baldoma L, Badia J, Aguilar J: Nucleotide sequence of the rhaR-sodA interval specifying rhaT in Escherichia coli. J Gen Microbiol. 1992 Jun;138(6):1109-16. doi: 10.1099/00221287-138-6-1109.
Pubmed: 1339463
Takeda Y, Avila H: Structure and gene expression of the E. coli Mn-superoxide dismutase gene. Nucleic Acids Res. 1986 Jun 11;14(11):4577-89. doi: 10.1093/nar/14.11.4577.
Pubmed: 3520487
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings