Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Guanine and Guanosine Salvage
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-09
Last Updated: 2019-08-13
Guanosine can be converted into guanine through a phosphate driven guanosine phosphorylase resulting in the release of an alpha-D-ribose 1 phosphate and a guanine. This compound in turn reacts with a PRPP through a guanine phosphoribosyltransferase resulting in the release of a pyrophosphate and a GMP.
Guanosine can also react with and ATP driven guanosine kinase resulting in the release of an ADP, s hydrogen ion and a GMP
References
Guanine and Guanosine Salvage References
Combes A, Lafleuriel J, Le Floc'h F: The inosine-guanosine kinase activity of mitochondria in tubers of Jerusalem artichoke. Plant Physiology & Biochemistry. 1989;27(5):729-736.
Kawasaki H, Shimaoka M, Usuda Y, Utagawa T: End-product regulation and kinetic mechanism of guanosine-inosine kinase from Escherichia coli. Biosci Biotechnol Biochem. 2000 May;64(5):972-9.
Pubmed: 10879466
Gots JS, Benson CE, Shumas SR: Genetic separation of hypoxanthine and guanine-xanthine phosphoribosyltransferase activities by deletion mutations in Salmonella typhimurium. J Bacteriol. 1972 Nov;112(2):910-6.
Pubmed: 4563984
Hammer-Jespersen K, Buxton RS, Hansen TD: A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine. Mol Gen Genet. 1980;179(2):341-8.
Pubmed: 7007809
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Harlow KW, Nygaard P, Hove-Jensen B: Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli. J Bacteriol. 1995 Apr;177(8):2236-40. doi: 10.1128/jb.177.8.2236-2240.1995.
Pubmed: 7721718
Mori H, Iida A, Teshiba S, Fujio T: Cloning of a guanosine-inosine kinase gene of Escherichia coli and characterization of the purified gene product. J Bacteriol. 1995 Sep;177(17):4921-6. doi: 10.1128/jb.177.17.4921-4926.1995.
Pubmed: 7665468
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA: Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7185-9. doi: 10.1073/pnas.88.16.7185.
Pubmed: 1714590
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Jagadeeswaran P, Ashman CR, Roberts S, Langenberg J: Nucleotide sequence and analysis of deletion mutants of the Escherichia coli gpt gene in plasmid pSV2 gpt. Gene. 1984 Nov;31(1-3):309-13. doi: 10.1016/0378-1119(84)90228-2.
Pubmed: 6396164
Deo SS, Tseng WC, Saini R, Coles RS, Athwal RS: Purification and characterization of Escherichia coli xanthine-guanine phosphoribosyltransferase produced by plasmid pSV2gpt. Biochim Biophys Acta. 1985 May 8;839(3):233-9. doi: 10.1016/0304-4165(85)90003-0.
Pubmed: 3886014
Pratt D, Subramani S: Nucleotide sequence of the Escherichia coli xanthine-guanine phosphoribosyl transferase gene. Nucleic Acids Res. 1983 Dec 20;11(24):8817-23. doi: 10.1093/nar/11.24.8817.
Pubmed: 6324103
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings