Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Purine Ribonucleosides Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-13
Last Updated: 2019-09-12
Purine ribonucleoside degradation leads to the production of alpha-D-ribose-1-phosphate.
Xanthosine is transported into the cytosol through a xapB. Once in the cytosol xanthosine interacts with phosphate through a xanthosine phosphorylase resulting in the release of a xanthine and a alpha-D-ribose-1-phosphate.
Adenosine is transported through a nupC or a nupG transporter, once inside the cytosol it can either react with a phosphate through a adenosine phosphorylase resultin in the release of a adenine and an alpha-D-ribose-1-phosphate. Adenosine reacts with water and hydrogen ion through a adenosine deaminase resulting in the release of ammonium and inosine. Inosine reacts with phosphate through a inosine phosphorylase resulting in the release of a hypoxanthine and an alpha-D-ribose-1-phosphate.
Guanosine reacts with a phosphate through a guanosine phosphorylase resulting in the release of a guanine and a alpha-D-ribose-1-phosphate.
References
Purine Ribonucleosides Degradation References
Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low Jr KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Escherichia coli and Salmonella, Cellular and Molecular Biology, Second Edition. American Society for Microbiology, Washington, D.C., 1996.
Seeger C, Poulsen C, Dandanell G: Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol. 1995 Oct;177(19):5506-16. doi: 10.1128/jb.177.19.5506-5516.1995.
Pubmed: 7559336
Shimaoka M, Takenaka Y, Mihara Y, Kurahashi O, Kawasaki H, Matsui H: Effects of xapA and guaA disruption on inosine accumulation in Escherichia coli. Biosci Biotechnol Biochem. 2006 Dec;70(12):3069-72. doi: 10.1271/bbb.60398. Epub 2006 Dec 7.
Pubmed: 17151449
Dandanell G, Szczepanowski RH, Kierdaszuk B, Shugar D, Bochtler M: Escherichia coli purine nucleoside phosphorylase II, the product of the xapA gene. J Mol Biol. 2005 Apr 22;348(1):113-25. doi: 10.1016/j.jmb.2005.02.019.
Pubmed: 15808857
Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA: Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7185-9. doi: 10.1073/pnas.88.16.7185.
Pubmed: 1714590
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Chang ZY, Nygaard P, Chinault AC, Kellems RE: Deduced amino acid sequence of Escherichia coli adenosine deaminase reveals evolutionarily conserved amino acid residues: implications for catalytic function. Biochemistry. 1991 Feb 26;30(8):2273-80. doi: 10.1021/bi00222a033.
Pubmed: 1998686
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Westh Hansen SE, Jensen N, Munch-Petersen A: Studies on the sequence and structure of the Escherichia coli K-12 nupG gene, encoding a nucleoside-transport system. Eur J Biochem. 1987 Oct 15;168(2):385-91. doi: 10.1111/j.1432-1033.1987.tb13431.x.
Pubmed: 3311747
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Jagadeeswaran P, Ashman CR, Roberts S, Langenberg J: Nucleotide sequence and analysis of deletion mutants of the Escherichia coli gpt gene in plasmid pSV2 gpt. Gene. 1984 Nov;31(1-3):309-13. doi: 10.1016/0378-1119(84)90228-2.
Pubmed: 6396164
Deo SS, Tseng WC, Saini R, Coles RS, Athwal RS: Purification and characterization of Escherichia coli xanthine-guanine phosphoribosyltransferase produced by plasmid pSV2gpt. Biochim Biophys Acta. 1985 May 8;839(3):233-9. doi: 10.1016/0304-4165(85)90003-0.
Pubmed: 3886014
Pratt D, Subramani S: Nucleotide sequence of the Escherichia coli xanthine-guanine phosphoribosyl transferase gene. Nucleic Acids Res. 1983 Dec 20;11(24):8817-23. doi: 10.1093/nar/11.24.8817.
Pubmed: 6324103
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings