
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Purine Deoxyribonucleosides Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-13
Last Updated: 2025-05-10
The purine deoxyribonucleosides degradation starts with deoxyadenosine reacting with a water molecule and a hydrogen in through a deoxyadenosune deaminase resulting in the release of ammonium and a deoxyinosine. Deoxyinosine reacts in a reversible manner with phosphate through a deoxyinosine phosphorylase resulting in the release of a hypoxanthine and a 2-deoxy-alpha-D-ribose-1-phosphate.
Deoxyadenosine reacts with a phosphate through a deoxyadenosine phosphorylase resulting in the release of adenine and a 2-deoxy-alpha-D-ribose-1-phosphate. This compound in turn reacts with guanine through a deoxyguanosine phosphorylase resulting in the release of a phosphate and a deoxyguanosine.
Deoxy-alpha-D-ribose 1-phosphate reacts with a deoxyribose 1,5-phosphomutase resulting in the release of a 2-deoxy-D-ribose 5 phosphate. This compound in turn reacts with deoxyribose-phosphate aldolase resulting in the release of an acetaldehyde and a a D-glyceraldehyde 3-phosphate.
References
Purine Deoxyribonucleosides Degradation References
Stoychev G, Kierdaszuk B, Shugar D: Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems. Eur J Biochem. 2002 Aug;269(16):4048-57.
Pubmed: 12180982
Acebron SP, Martin I, del Castillo U, Moro F, Muga A: DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 2009 Sep 17;583(18):2991-6. doi: 10.1016/j.febslet.2009.08.020. Epub 2009 Aug 19.
Pubmed: 19698713
Ahmad SI, Pritchard RH: A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Mol Gen Genet. 1969 Aug 15;104(4):351-9.
Pubmed: 4904508
Aristarkhov A, Mikulskis A, Belasco JG, Lin EC: Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol. 1996 Jul;178(14):4327-32.
Pubmed: 8763968
Burlingame R, Chapman PJ: Stereospecificity in meta-fission catabolic pathways. J Bacteriol. 1983 Jul;155(1):424-6.
Pubmed: 6345511
Chen YM, Lin EC: Regulation of the adhE gene, which encodes ethanol dehydrogenase in Escherichia coli. J Bacteriol. 1991 Dec;173(24):8009-13.
Pubmed: 1744060
Clark DP, Cronan JE Jr: Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J Bacteriol. 1980 Oct;144(1):179-84.
Pubmed: 6998946
Clark DP: The fermentation pathways of Escherichia coli. FEMS Microbiol Rev. 1989 Sep;5(3):223-34.
Pubmed: 2698228
Dailly YP, Bunch P, Clark DP: Comparison of the fermentative alcohol dehydrogenases of Salmonella typhimurium and Escherichia coli. Microbios. 2000;103(406):179-96.
Pubmed: 11131810
Dale B, Greenberg GR: Genetic mapping of a mutation in Escherichia coli showing reduced activity of thymidine phosphorylase. J Bacteriol. 1967 Sep;94(3):778-9.
Pubmed: 5340684
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011 Aug 10;476(7360):355-9. doi: 10.1038/nature10333.
Pubmed: 21832992
DeSantis G, Liu J, Clark DP, Heine A, Wilson IA, Wong CH: Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem. 2003 Jan 2;11(1):43-52.
Pubmed: 12467706
Diaz-Mejia JJ, Babu M, Emili A: Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev. 2009 Jan;33(1):66-97. doi: 10.1111/j.1574-6976.2008.00141.x. Epub 2008 Nov 27.
Pubmed: 19054114
Echave P, Tamarit J, Cabiscol E, Ros J: Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem. 2003 Aug 8;278(32):30193-8. doi: 10.1074/jbc.M304351200. Epub 2003 Jun 3.
Pubmed: 12783863
Ferrandez A, Garcia JL, Diaz E: Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol. 1997 Apr;179(8):2573-81.
Pubmed: 9098055
Fischer B, Boutserin S, Mazon H, Collin S, Branlant G, Gruez A, Talfournier F: Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: evidence for several active oligomeric states and coenzyme A activation upon binding. Chem Biol Interact. 2013 Feb 25;202(1-3):70-7. doi: 10.1016/j.cbi.2012.11.006. Epub 2012 Dec 10.
Pubmed: 23237860
Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA: Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7185-9. doi: 10.1073/pnas.88.16.7185.
Pubmed: 1714590
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Chang ZY, Nygaard P, Chinault AC, Kellems RE: Deduced amino acid sequence of Escherichia coli adenosine deaminase reveals evolutionarily conserved amino acid residues: implications for catalytic function. Biochemistry. 1991 Feb 26;30(8):2273-80. doi: 10.1021/bi00222a033.
Pubmed: 1998686
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Valentin-Hansen P, Boetius F, Hammer-Jespersen K, Svendsen I: The primary structure of Escherichia coli K12 2-deoxyribose 5-phosphate aldolase. Nucleotide sequence of the deoC gene and the amino acid sequence of the enzyme. Eur J Biochem. 1982 Jul;125(3):561-6. doi: 10.1111/j.1432-1033.1982.tb06719.x.
Pubmed: 6749498
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings