Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Spermidine Biosynthesis and Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-13
Last Updated: 2019-08-13
Spermidine metabolism starts with S-adenosyl-L-methionine reacting with a hydrogen ion through a adenosylmethionine decarboxylase resulting in the release of a carbon dioxide and a S-adenosyl 3-(methylthio)propylamine. The later compound in turn reacts with putrescine resulting in the release of a hydrogen ion, a spermidine and a S-methyl-5'-thioadenosine. S-methyl-5'-thioadenosine in turn reacts with a water molecule through a 5-methylthioadenosine nucleosidase resulting in the release of a adenine and a S-methyl-5-thio-D-ribose which in in turn is released into the environment.
References
Spermidine Biosynthesis and Metabolism References
Abraham KA: Studies on DNA-dependent RNA polymerase from Escherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Eur J Biochem. 1968 Jun;5(1):143-6.
Pubmed: 4873311
Chattopadhyay MK, Tabor CW, Tabor H: Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol. 2009 Sep;191(17):5549-52. doi: 10.1128/JB.00381-09. Epub 2009 Jun 19.
Pubmed: 19542271
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Frydman L, Rossomando PC, Frydman V, Fernandez CO, Frydman B, Samejima K: Interactions between natural polyamines and tRNA: an 15N NMR analysis. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9186-90.
Pubmed: 1409623
Huang SC, Panagiotidis CA, Canellakis ES: Transcriptional effects of polyamines on ribosomal proteins and on polyamine-synthesizing enzymes in Escherichia coli. Proc Natl Acad Sci U S A. 1990 May;87(9):3464-8.
Pubmed: 2185470
Igarashi K, Kashiwagi K: Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem. 2006 Jan;139(1):11-6. doi: 10.1093/jb/mvj020.
Pubmed: 16428314
Lu CD: Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol. 2006 Apr;70(3):261-72. doi: 10.1007/s00253-005-0308-z. Epub 2006 Jan 24.
Pubmed: 16432742
Tabor CW, Tabor H: Polyamines in microorganisms. Microbiol Rev. 1985 Mar;49(1):81-99.
Pubmed: 3157043
Zhou X, Chua TK, Tkaczuk KL, Bujnicki JM, Sivaraman J: The crystal structure of Escherichia coli spermidine synthase SpeE reveals a unique substrate-binding pocket. J Struct Biol. 2010 Mar;169(3):277-85. doi: 10.1016/j.jsb.2009.12.024. Epub 2010 Jan 4.
Pubmed: 20051267
Albers E: Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5'-methylthioadenosine. IUBMB Life. 2009 Dec;61(12):1132-42. doi: 10.1002/iub.278.
Pubmed: 19946895
Hughes JA: In vivo hydrolysis of S-adenosyl-L-methionine in Escherichia coli increases export of 5-methylthioribose. Can J Microbiol. 2006 Jun;52(6):599-602. doi: 10.1139/w06-008.
Pubmed: 16788729
Schroeder HR, Barnes CJ, Bohinski RC, Mallette MF: Biological production of 5-methylthioribose. Can J Microbiol. 1973 Nov;19(11):1347-54.
Pubmed: 4203512
Sekowska A, Kung HF, Danchin A: Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol. 2000 Apr;2(2):145-77.
Pubmed: 10939241
Tabor CW, Tabor H: The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase. J Biol Chem. 1987 Nov 25;262(33):16037-40.
Pubmed: 3316212
Fujita N, Mori H, Yura T, Ishihama A: Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637-9. doi: 10.1093/nar/22.9.1637.
Pubmed: 8202364
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Xie QW, Tabor CW, Tabor H: Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speED operon. J Bacteriol. 1989 Aug;171(8):4457-65. doi: 10.1128/jb.171.8.4457-4465.1989.
Pubmed: 2666401
Tabor CW, Tabor H, Xie QW: Spermidine synthase of Escherichia coli: localization of the speE gene. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6040-4. doi: 10.1073/pnas.83.16.6040.
Pubmed: 3526348
Cornell KA, Riscoe MK: Cloning and expression of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. Biochim Biophys Acta. 1998 Mar 4;1396(1):8-14. doi: 10.1016/s0167-4781(97)00169-3.
Pubmed: 9524204
Cornell KA, Swarts WE, Barry RD, Riscoe MK: Characterization of recombinant Eschericha coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: analysis of enzymatic activity and substrate specificity. Biochem Biophys Res Commun. 1996 Nov 21;228(3):724-32. doi: 10.1006/bbrc.1996.1723.
Pubmed: 8941345
Wurgler SM, Richardson CC: Structure and regulation of the gene for dGTP triphosphohydrolase from Escherichia coli. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2740-4. doi: 10.1073/pnas.87.7.2740.
Pubmed: 2157212
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings