
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Adenosine Nucleotides Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-13
Last Updated: 2025-02-15
The degradation of of adenosine nucleotides starts with AMP reacting with water through a nucleoside monophosphate phosphatase results in the release of phosphate and a adenosine. Adenosine reacts with water and hydrogen ion through an adenosine deaminase resulting in the release of ammonium and a inosine. Inosine reacts with phosphate through a inosine phosphorylase resulting in the release of an alpha-D-ribose-1-phosphate and an hypoxanthine. Hypoxanthine reacts with a water molecule and a NAD molecule through an hypoxanthine hydroxylase resulting in the release of an hydrogen ion, an NADH and a xanthine. Xanthine in turn is degraded by reacting with a water molecule and a NAD through xanthine NAD oxidoreductase resulting in the release of NADH, a hydrogen ion and urate.
References
Adenosine Nucleotides Degradation References
Xi H, Schneider BL, Reitzer L: Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol. 2000 Oct;182(19):5332-41.
Pubmed: 10986234
Thaller MC, Schippa S, Bonci A, Cresti S, Rossolini GM: Identification of the gene (aphA) encoding the class B acid phosphatase/phosphotransferase of Escherichia coli MG1655 and characterization of its product. FEMS Microbiol Lett. 1997 Jan 15;146(2):191-8. doi: 10.1111/j.1574-6968.1997.tb10192.x.
Pubmed: 9011040
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Burns DM, Beacham IR: Nucleotide sequence and transcriptional analysis of the E. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5'-nucleotidase): regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res. 1986 May 27;14(10):4325-42. doi: 10.1093/nar/14.10.4325.
Pubmed: 3012467
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
DuBose RF, Dykhuizen DE, Hartl DL: Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc Natl Acad Sci U S A. 1988 Sep;85(18):7036-40. doi: 10.1073/pnas.85.18.7036.
Pubmed: 3045828
Agrawal DK, Wanner BL: A phoA structural gene mutation that conditionally affects formation of the enzyme bacterial alkaline phosphatase. J Bacteriol. 1990 Jun;172(6):3180-90. doi: 10.1128/jb.172.6.3180-3190.1990.
Pubmed: 2345142
Kikuchi Y, Yoda K, Yamasaki M, Tamura G: The nucleotide sequence of the promoter and the amino-terminal region of alkaline phosphatase structural gene (phoA) of Escherichia coli. Nucleic Acids Res. 1981 Nov 11;9(21):5671-8. doi: 10.1093/nar/9.21.5671.
Pubmed: 6273802
Chang ZY, Nygaard P, Chinault AC, Kellems RE: Deduced amino acid sequence of Escherichia coli adenosine deaminase reveals evolutionarily conserved amino acid residues: implications for catalytic function. Biochemistry. 1991 Feb 26;30(8):2273-80. doi: 10.1021/bi00222a033.
Pubmed: 1998686
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA: Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7185-9. doi: 10.1073/pnas.88.16.7185.
Pubmed: 1714590
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Xi H, Schneider BL, Reitzer L: Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol. 2000 Oct;182(19):5332-41. doi: 10.1128/jb.182.19.5332-5341.2000.
Pubmed: 10986234
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002103
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings