
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
L-Threonine Degradation to Methylglyoxal
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-14
Last Updated: 2025-02-08
L-threonine is degrade into methylglyoxal (pyruvaldehyde) by first reacting with a NDA dependent threonine dehydrogenase resulting in the release of a hydrogen ion, an NADH and a 2-amino-3-oxobutanoate. The latter compound reacts spontaneously with a hydrogen ion resulting in the release of a carbon dioxide and a aminoacetone. The aminoacetone in turn reacts with an oxygen and a water molecule through an aminoacetone oxidase resulting in the release of a hydrogen peroxide, ammonium and a methylglyoxal which can then be incorporated in the methylglyoxal degradation pathways.
References
L-Threonine Degradation to Methylglyoxal References
Boylan SA, Dekker EE: Growth, enzyme levels, and some metabolic properties of an Escherichia coli mutant grown on L-threonine as the sole carbon source. J Bacteriol. 1983 Oct;156(1):273-80.
Pubmed: 6413491
Dutra F, Knudsen FS, Curi D, Bechara EJ: Aerobic oxidation of aminoacetone, a threonine catabolite: iron catalysis and coupled iron release from ferritin. Chem Res Toxicol. 2001 Sep;14(9):1323-9.
Pubmed: 11559049
ELLIOTT WH: Aminoacetone formation by Staphylococcus aureus. Biochem J. 1960 Mar;74:478-85.
Pubmed: 13820014
Faulkner A, Turner JM: Microbial metabolism of amino alcohols. Aminoacetone metabolism via 1-aminopropan-2-ol in Pseudomonas sp. N.C.I.B. 8858. Biochem J. 1974 Feb;138(2):263-76.
Pubmed: 4362743
Green ML, Lewis JB: The oxidation of aminoacetone by a species of Arthrobacter. Biochem J. 1968 Jan;106(1):267-70.
Pubmed: 5721463
Higgins IJ, Turner JM, Willetts AJ: Enzyme mechanism of aminoacetone metabolism by micro-organisms. Nature. 1967 Aug 19;215(5103):887-8.
Pubmed: 4292865
Kelley JJ, Dekker EE: Identity of Escherichia coli D-1-amino-2-propanol:NAD+ oxidoreductase with E. coli glycerol dehydrogenase but not with Neisseria gonorrhoeae 1,2-propanediol:NAD+ oxidoreductase. J Bacteriol. 1985 Apr;162(1):170-5.
Pubmed: 3920199
Kim YM, Ogawa W, Tamai E, Kuroda T, Mizushima T, Tsuchiya T: Purification, reconstitution, and characterization of Na(+)/serine symporter, SstT, of Escherichia coli. J Biochem. 2002 Jul;132(1):71-6.
Pubmed: 12097162
Kim I, Kim E, Yoo S, Shin D, Min B, Song J, Park C: Ribose utilization with an excess of mutarotase causes cell death due to accumulation of methylglyoxal. J Bacteriol. 2004 Nov;186(21):7229-35. doi: 10.1128/JB.186.21.7229-7235.2004.
Pubmed: 15489434
Komatsubara S, Murata K, Kisumi M, Chibata I: Threonine degradation by Serratia marcescens. J Bacteriol. 1978 Aug;135(2):318-23.
Pubmed: 355220
Lyles GA: Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol. 1996 Mar;28(3):259-74.
Pubmed: 8920635
Potter R, Kapoor V, Newman EB: Role of threonine dehydrogenase in Escherichia coli threonine degradation. J Bacteriol. 1977 Nov;132(2):385-91.
Pubmed: 334738
Rahhal DA, Turner JM, Willetts AJ: The role of aminoacetone in L-threonine metabolism by Bacillus subtilis. Biochem J. 1967 Jun;103(3):73P.
Pubmed: 4292837
Ray S, Ray M: Formation of methylglyoxal from aminoacetone by amine oxidase from goat plasma. J Biol Chem. 1983 Mar 25;258(6):3461-2.
Pubmed: 6833209
Reitzer L: Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol. 2003;57:155-76. doi: 10.1146/annurev.micro.57.030502.090820. Epub 2003 May 1.
Pubmed: 12730324
Robbins JC, Oxender DL: Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol. 1973 Oct;116(1):12-8.
Pubmed: 4583203
Sumantran VN, Schweizer HP, Datta P: A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J Bacteriol. 1990 Aug;172(8):4288-94.
Pubmed: 2115866
UMBARGER HE, BROWN B: Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105-12.
Pubmed: 13405870
Willetts AJ, Turner JM: Threonine metabolism in a strain of Bacillus subtilis. Biochem J. 1970 Apr;117(2):27P-28P.
Pubmed: 4986871
Willetts AJ, Turner JM: Threonine metabolism in a strain of Bacillus subtilis enzymic oxidation of 1-aminopropan-2-ol and aminoacetone. Biochim Biophys Acta. 1971 Oct;252(1):98-104.
Pubmed: 4334917
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Aronson BD, Somerville RL, Epperly BR, Dekker EE: The primary structure of Escherichia coli L-threonine dehydrogenase. J Biol Chem. 1989 Mar 25;264(9):5226-32.
Pubmed: 2647748
Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576-86. doi: 10.1093/nar/22.13.2576.
Pubmed: 8041620
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Parsons MR, Convery MA, Wilmot CM, Yadav KD, Blakeley V, Corner AS, Phillips SE, McPherson MJ, Knowles PF: Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171-84.
Pubmed: 8591028
Steinebach V, Benen JA, Bader R, Postma PW, De Vries S, Duine JA: Cloning of the maoA gene that encodes aromatic amine oxidase of Escherichia coli W3350 and characterization of the overexpressed enzyme. Eur J Biochem. 1996 May 1;237(3):584-91. doi: 10.1111/j.1432-1033.1996.0584p.x.
Pubmed: 8647101
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002118
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings