Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
L-Cysteine Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-14
Last Updated: 2019-08-14
The degradation of cysteine starts with L-cysteine reacting with l-cysteine desulfhydrase resulting in the release of a hydrogen sulfide, a hydrogen ion and a a 2-aminoprop-2-enoate. The latter compound in turn reacts spontaneously to form a 2-iminopropanoate. This compound in turn reacts spontaneously with water and a hydrogen ion resulting in the release of ammonium and pyruvate.
References
L-Cysteine Degradation References
Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S: Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol. 2003 Aug;62(2-3):239-43. doi: 10.1007/s00253-003-1262-2. Epub 2003 Mar 20.
Pubmed: 12883870
Awano N, Wada M, Mori H, Nakamori S, Takagi H: Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol. 2005 Jul;71(7):4149-52. doi: 10.1128/AEM.71.7.4149-4152.2005.
Pubmed: 16000837
Cantarow WD, Cheung HT, Sundharadas G: Effects of prostaglandins on the spreading, adhesion and migration of mouse peritoneal macrophages. Prostaglandins. 1978 Jul;16(1):39-46.
Pubmed: 704923
DELWICHE EA: Activators for the cysteine desulfhydrase system of an Escherichia coli mutant. J Bacteriol. 1951 Dec;62(6):717-22.
Pubmed: 14907623
Dwivedi CM, Ragin RC, Uren JR: Cloning, purification, and characterization of beta-cystathionase from Escherichia coli. Biochemistry. 1982 Jun 22;21(13):3064-9.
Pubmed: 7049234
METAXAS MA, DELWICHE EA: The L-cysteine desulfhydrase of Escherichia coli. J Bacteriol. 1955 Dec;70(6):735-7.
Pubmed: 13271322
Nakamori S, Kobayashi SI, Kobayashi C, Takagi H: Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol. 1998 May;64(5):1607-11.
Pubmed: 9572924
NEWTON WA, SNELL EE: CATALYTIC PROPERTIES OF TRYPTOPHANASE, A MULTIFUNCTIONAL PYRIDOXAL PHOSPHATE ENZYME. Proc Natl Acad Sci U S A. 1964 Mar;51:382-9.
Pubmed: 14171448
Wang DY, De Stavola BL, Bulbrook RD, Allen DS, Kwa HG, Fentiman IS, Hayward JL, Millis RR: Relationship of blood prolactin levels and the risk of subsequent breast cancer. Int J Epidemiol. 1992 Apr;21(2):214-21.
Pubmed: 1428472
Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H: Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol. 2006 Jul;72(7):4735-42. doi: 10.1128/AEM.02507-05.
Pubmed: 16820466
Deeley MC, Yanofsky C: Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol. 1981 Sep;147(3):787-96.
Pubmed: 6268608
Tokushige M, Tsujimoto N, Oda T, Honda T, Yumoto N, Ito S, Yamamoto M, Kim EH, Hiragi Y: Role of cysteine residues in tryptophanase for monovalent cation-induced activation. Biochimie. 1989 Jun;71(6):711-20. doi: 10.1016/0300-9084(89)90087-4.
Pubmed: 2502187
Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
Pubmed: 7686882
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings