Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Operon: Mannose Uptake Inactivation
Escherichia coli
Category:
Protein Pathway
Sub-Categories:
Gene Regulatory
Transport/Degradation
Cellular Response
Created: 2015-10-29
Last Updated: 2019-12-04
The manXYZ operon in E. coli contains three genes that encode for different components of the sugar phosphotransferase system (PTS system) enzyme II. This enzyme is involved specifcally in the transport of mannose.
This operon can be inhibited by the DNA-binding transcriptional repressor Mlc, which binds to the regulatory region of the operon, preventing its transcription. It can also be inhibited by the DNA-binding transcriptional dual regulator Cra, which forms a complex with DNA to prevent transcription. However, if beta-D-fructofuranose 1-phosphate is present, it will bind to Cra and prevent it from binding to the DNA, allowing the genes to be transcribed. The final inhibitor of the manXYZ operon is the N-acetylglucosamine repressor NagC, which also binds to DNA to inhibit transcription of the operon. However, similar to Cra, it can be bound by N-acetyl-D-glucosamine 6-phosphate, which prevents it from binding to the DNA, and stops the inhibition of the operon.
The first gene in the operon, manX, encodes the PTS system mannose-specific EIIAB component protein with an A and B domain that are linked. The protein is a dimer in the cell, and is found in the inner membrane of the bacteria, as it is a protein that allows mannose to enter the cell.
The second gene, manY, encodes the mannose permease IIC component, which is found in the cell's inner membrane as part of the permease complex. The protein products of manX and manY are required for lambda phage infection of the cell, as they likely form the pore that allows for its DNA to penetrate the cell.
The final gene, manZ, encodes the mannose permease IID component. This protein is found in the cell's inner membrane along with the other two components, and is responsible for forming the transmembrane channel, along with the ManY protein.
References
Operon: Mannose Uptake Inactivation References
Plumbridge J, Kolb A: CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli. J Mol Biol. 1991 Feb 20;217(4):661-79.
Pubmed: 1848637
Zheng D, Constantinidou C, Hobman JL, Minchin SD: Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res. 2004 Nov 1;32(19):5874-93. doi: 10.1093/nar/gkh908. Print 2004.
Pubmed: 15520470
Erni B, Zanolari B, Kocher HP: The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem. 1987 Apr 15;262(11):5238-47.
Pubmed: 2951378
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Leclerc G, Noel G, Drapeau GR: Molecular cloning, nucleotide sequence, and expression of shl, a new gene in the 2-minute region of the genetic map of Escherichia coli. J Bacteriol. 1990 Aug;172(8):4696-700. doi: 10.1128/jb.172.8.4696-4700.1990.
Pubmed: 2198273
Jahreis K, Postma PW, Lengeler JW: Nucleotide sequence of the ilvH-fruR gene region of Escherichia coli K12 and Salmonella typhimurium LT2. Mol Gen Genet. 1991 Apr;226(1-2):332-6. doi: 10.1007/bf00273623.
Pubmed: 1851954
Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A: Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305-8. doi: 10.1093/nar/20.13.3305.
Pubmed: 1630901
Hosono K, Kakuda H, Ichihara S: Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid. Biosci Biotechnol Biochem. 1995 Feb;59(2):256-61. doi: 10.1271/bbb.59.256.
Pubmed: 7766024
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Plumbridge JA: Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol. 1989 Apr;3(4):505-15. doi: 10.1111/j.1365-2958.1989.tb00197.x.
Pubmed: 2668691
Peri KG, Goldie H, Waygood EB: Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol. 1990 Jan;68(1):123-37.
Pubmed: 2190615
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings