Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Operon: Biosynthesis of Aromatic Amino Acids
Escherichia coli
Category:
Protein Pathway
Sub-Categories:
Gene Regulatory
Cellular Response
Created: 2015-11-03
Last Updated: 2019-10-02
The aroF-tyrA operon in E. coli contains two genes that encode proteins involved in chorismate biosynthesis and L-tyrosine biosynthesis respectively. The operon is activated by the redox-sensitive transcriptional activator SoxR, which binds to the promoter region of the operon and when the bacteria is experiencing oxidative stress, it can activate transcription of the operon. The operon can also be repressed by the binding of the transcriptional regulatory protein TyrR. When L-tyrosine levels in the cell are high enough, it can bind to the TyrR protein, forming an active regulatory protein. This can then bind to the promoter region at several different locations, inhibiting transcription of the operon.
The first gene in the operon, aroF, encodes a Tyr-sensitive phospho-2-dehydro-3-deoxyheptonate aldolase (DAHP synthase). This enzyme catalyzes the condensation reaction of D-erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP) into 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). This reaction is the first step in the chorismate biosynthesis pathway, an important compound for bacterial biochemical processes.
The second gene, tyrA, encodes the T-protein, an enzyme that catalyzees the formation of prephenate from chorismate. This reaction is a part of the L-tyrosine biosynthesis pathway.
References
Operon: Biosynthesis of Aromatic Amino Acids References
Cobbett CS: Repression of the aroF promoter by the TyrR repressor in Escherichia coli K-12: role of the 'upstream' operator site. Mol Microbiol. 1988 May;2(3):377-83.
Pubmed: 3041242
Garner CC, Herrmann KM: Operator mutations of the Escherichia coli aroF gene. J Biol Chem. 1985 Mar 25;260(6):3820-5.
Pubmed: 2857723
DeFeyter RC, Davidson BE, Pittard J: Nucleotide sequence of the transcription unit containing the aroL and aroM genes from Escherichia coli K-12. J Bacteriol. 1986 Jan;165(1):233-9.
Pubmed: 3001025
Shultz J, Hermodson MA, Garner CC, Herrmann KM: The nucleotide sequence of the aroF gene of Escherichia coli and the amino acid sequence of the encoded protein, the tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J Biol Chem. 1984 Aug 10;259(15):9655-61.
Pubmed: 6146618
Hudson GS, Davidson BE: Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol. 1984 Dec 25;180(4):1023-51. doi: 10.1016/0022-2836(84)90269-9.
Pubmed: 6396419
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Cornish EC, Argyropoulos VP, Pittard J, Davidson BE: Structure of the Escherichia coli K12 regulatory gene tyrR. Nucleotide sequence and sites of initiation of transcription and translation. J Biol Chem. 1986 Jan 5;261(1):403-10.
Pubmed: 3001057
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings