Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Operon: Maltodextrins and Maltose Transport
Escherichia coli
Category:
Protein Pathway
Sub-Categories:
Gene Regulatory
Transport/Degradation
Cellular Response
Created: 2015-11-06
Last Updated: 2019-08-16
The maltodextrins and maltose transport operon consist of the genes malE, malF, malG. This operon's transcription is activated by Fis DNA-binding transcriptional dual regulator)binding to either 52 or -116. Transcription can also be activated by MalT-Maltotriose-ATP DNA-binding transcriptional activator binding to -41.5, -51.5, -197.5, -207.5, or -231.5. Transcription can also be activated by CRP-cAMP DNA-binding transcriptional dual regulator binding to -76.5, -105.5, -139.5, or -171.5.
The repression of transcription of this operon regulated by CreB-Phosphorylated DNA-binding transcriptional regulator binding to 18.5
References
Operon: Maltodextrins and Maltose Transport References
Avison MB, Horton RE, Walsh TR, Bennett PM: Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem. 2001 Jul 20;276(29):26955-61. doi: 10.1074/jbc.M011186200. Epub 2001 May 11.
Pubmed: 11350954
Bedouelle H: Mutations in the promoter regions of the malEFG and malK-lamB operons of Escherichia coli K12. J Mol Biol. 1983 Nov 15;170(4):861-82.
Pubmed: 6417341
Boos W, Shuman H: Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev. 1998 Mar;62(1):204-29.
Pubmed: 9529892
Bradley MD, Beach MB, de Koning AP, Pratt TS, Osuna R: Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology. 2007 Sep;153(Pt 9):2922-40. doi: 10.1099/mic.0.2007/008565-0.
Pubmed: 17768236
Francoz E, Dassa E: 3' end of the malEFG operon in E.coli: localization of the transcription termination site. Nucleic Acids Res. 1988 May 11;16(9):4097-109.
Pubmed: 2836810
Huerta AM, Collado-Vides J: Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol. 2003 Oct 17;333(2):261-78.
Pubmed: 14529615
Merkel TJ, Nelson DM, Brauer CL, Kadner RJ: Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J Bacteriol. 1992 May;174(9):2763-70.
Pubmed: 1569008
Raibaud O: Nucleoprotein structures at positively regulated bacterial promoters: homology with replication origins and some hypotheses on the quaternary structure of the activator proteins in these complexes. Mol Microbiol. 1989 Mar;3(3):455-8.
Pubmed: 2664421
Raibaud O, Vidal-Ingigliardi D, Richet E: A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. J Mol Biol. 1989 Feb 5;205(3):471-85.
Pubmed: 2538630
Richet E: Synergistic transcription activation: a dual role for CRP in the activation of an Escherichia coli promoter depending on MalT and CRP. EMBO J. 2000 Oct 2;19(19):5222-32. doi: 10.1093/emboj/19.19.5222.
Pubmed: 11013224
Richet E, Raibaud O: Supercoiling is essential for the formation and stability of the initiation complex at the divergent malEp and malKp promoters. J Mol Biol. 1991 Apr 5;218(3):529-42.
Pubmed: 2016744
Richet E: On the role of the multiple regulatory elements involved in the activation of the Escherichia coli malEp promoter. J Mol Biol. 1996 Dec 20;264(5):852-62. doi: 10.1006/jmbi.1996.0682.
Pubmed: 9000616
Vidal-Ingigliardi D, Raibaud O: Three adjacent binding sites for cAMP receptor protein are involved in the activation of the divergent malEp-malKp promoters. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):229-33.
Pubmed: 1824723
Ovchinnikov YA, Monastyrskaya GS, Gubanov VV, Guryev SO, Chertov OYu, Modyanov NN, Grinkevich VA, Makarova IA, Marchenko TV, Polovnikova IN, Lipkin VM, Sverdlov ED: The primary structure of Escherichia coli RNA polymerase. Nucleotide sequence of the rpoB gene and amino-acid sequence of the beta-subunit. Eur J Biochem. 1981 Jun 1;116(3):621-9. doi: 10.1111/j.1432-1033.1981.tb05381.x.
Pubmed: 6266829
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Meek DW, Hayward RS: Nucleotide sequence of the rpoA-rplQ DNA of Escherichia coli: a second regulatory binding site for protein S4? Nucleic Acids Res. 1984 Jul 25;12(14):5813-21. doi: 10.1093/nar/12.14.5813.
Pubmed: 6379605
Igarashi K, Fujita N, Ishihama A: Sequence analysis of two temperature-sensitive mutations in the alpha subunit gene (rpoA) of Escherichia coli RNA polymerase. Nucleic Acids Res. 1990 Oct 25;18(20):5945-8. doi: 10.1093/nar/18.20.5945.
Pubmed: 2235479
Ovchinnikov YA, Lipkin VM, Modyanov NN, Chertov OY, Smirnov YV: Primary structure of alpha-subunit of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett. 1977 Apr 1;76(1):108-11. doi: 10.1016/0014-5793(77)80131-2.
Pubmed: 323055
Ovchinnikov YuA, Monastyrskaya GS, Gubanov VV, Guryev SO, Salomatina IS, Shuvaeva TM, Lipkin VM, Sverdlov ED: The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit. Nucleic Acids Res. 1982 Jul 10;10(13):4035-44. doi: 10.1093/nar/10.13.4035.
Pubmed: 6287430
Squires C, Krainer A, Barry G, Shen WF, Squires CL: Nucleotide sequence at the end of the gene for the RNA polymerase beta' subunit (rpoC). Nucleic Acids Res. 1981 Dec 21;9(24):6827-40. doi: 10.1093/nar/9.24.6827.
Pubmed: 6278450
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings