Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Operon: High Frequency of Lysogenization
Escherichia coli
Category:
Protein Pathway
Sub-Categories:
Gene Regulatory
Cellular Response
Created: 2015-11-10
Last Updated: 2019-08-16
The high frequency of lyzogenization operon is a polycistronic operon consisting of the genes: hfq, hflX, hflK and hflC. This operon is regulated by CRP-cAMP DNA-binding transcriptional dual regulator being binded to a crp binding site in the -96.5 bp from the promoter
References
Operon: High Frequency of Lysogenization References
Huerta AM, Collado-Vides J: Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol. 2003 Oct 17;333(2):261-78.
Pubmed: 14529615
Lin HH, Hsu CC, Yang CD, Ju YW, Chen YP, Tseng CP: Negative effect of glucose on ompA mRNA stability: a potential role of cyclic AMP in the repression of hfq in Escherichia coli. J Bacteriol. 2011 Oct;193(20):5833-40. doi: 10.1128/JB.05359-11. Epub 2011 Aug 12.
Pubmed: 21840983
Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA: Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 2006 Jul 1;20(13):1776-89. doi: 10.1101/gad.1428206.
Pubmed: 16818608
Tsui HC, Feng G, Winkler ME: Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J Bacteriol. 1996 Oct;178(19):5719-31.
Pubmed: 8824618
Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods. 2006 Aug;3(8):623-8. doi: 10.1038/nmeth895.
Pubmed: 16862137
Ovchinnikov YA, Monastyrskaya GS, Gubanov VV, Guryev SO, Chertov OYu, Modyanov NN, Grinkevich VA, Makarova IA, Marchenko TV, Polovnikova IN, Lipkin VM, Sverdlov ED: The primary structure of Escherichia coli RNA polymerase. Nucleotide sequence of the rpoB gene and amino-acid sequence of the beta-subunit. Eur J Biochem. 1981 Jun 1;116(3):621-9. doi: 10.1111/j.1432-1033.1981.tb05381.x.
Pubmed: 6266829
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Meek DW, Hayward RS: Nucleotide sequence of the rpoA-rplQ DNA of Escherichia coli: a second regulatory binding site for protein S4? Nucleic Acids Res. 1984 Jul 25;12(14):5813-21. doi: 10.1093/nar/12.14.5813.
Pubmed: 6379605
Igarashi K, Fujita N, Ishihama A: Sequence analysis of two temperature-sensitive mutations in the alpha subunit gene (rpoA) of Escherichia coli RNA polymerase. Nucleic Acids Res. 1990 Oct 25;18(20):5945-8. doi: 10.1093/nar/18.20.5945.
Pubmed: 2235479
Ovchinnikov YA, Lipkin VM, Modyanov NN, Chertov OY, Smirnov YV: Primary structure of alpha-subunit of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett. 1977 Apr 1;76(1):108-11. doi: 10.1016/0014-5793(77)80131-2.
Pubmed: 323055
Ovchinnikov YuA, Monastyrskaya GS, Gubanov VV, Guryev SO, Salomatina IS, Shuvaeva TM, Lipkin VM, Sverdlov ED: The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit. Nucleic Acids Res. 1982 Jul 10;10(13):4035-44. doi: 10.1093/nar/10.13.4035.
Pubmed: 6287430
Squires C, Krainer A, Barry G, Shen WF, Squires CL: Nucleotide sequence at the end of the gene for the RNA polymerase beta' subunit (rpoC). Nucleic Acids Res. 1981 Dec 21;9(24):6827-40. doi: 10.1093/nar/9.24.6827.
Pubmed: 6278450
Highlighted elements will appear in red.
Highlight Compounds
No Compounds Present
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
No Compounds Present
Visualize Protein Data
Settings