Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Methionine Metabolism and Salvage
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-12-11
Last Updated: 2019-09-12
The biosynthesis of methionine begins with aspartate being phosphorylated into L-aspartyl-4-phosphate through an ATP driven aspartate kinase. L-Aspartyl-4-phosphate is then catabolized through an NADPH-dependent aspartic beta-semialdehyde dehydrogenase resulting in the release of L-aspartate semialdehyde which is transformed into a homoserine through a homoserine dehydrogenase. Homeserine, in turn, is acetylated through a homoserine O-trans-acetylase resulting in the release of O-acetyl-L-homoserine.
The latter compound interacts with hydrogen sulfide through an O-acetylhomoserine (thiol)-lyase resulting in the release of L-homocysteine. The latter compound then reacts with 5-methylterahydropteroyltri-L-glutamate through an N5-methyltetrahydropteroyltrigluatamate homocysteine methyltransferase resulting in the release of a tetrahydropteroyltri-l-glutamate and methionine. The degradation of methionine begins with methionine being used to synthesize S-adenosylmethionine through an S-adenosylmethionine synthetase. The S-adenosylmethionine reacts with a demethylated methyl donor resulting in the release of a methylated methyl donor, a hydrogen ion, and an S-adenosylhomocysteine. The latter compound then reacts with an S-adenosyl-L-homocysteine hydrolase resulting in the release of adenosine and homocysteine where the cycle can begin again. The salvage of methionine begins with S-methyl-5'-thioadenosine (a product of spermine biosynthesis) being phosphorylated through a 5-methylthioadenosine phosphorylase resulting in the release of adenine and S-methyl-5-thio-alpha-D-ribose 1-phosphate. This last compound is isomerized into 5-methylthioribulose 1-phosphate. The latter compound is then dehydrated through a methylthioribulose 1-phosphate dehydratase resulting in 5-(methylthio)-2,3-dioxopentyl 1-phosphate. This resulting compound is then dephosphorylated through a 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase resulting in a 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one. This latter compound can react spontaneously or through an acireductone dioxygenase resulting in the release of a 2-oxo-4-methylthiobutanoate. This latter compound is then turned into methionine through an aromatic amino acid aminotransferase II.
References
Methionine Metabolism and Salvage References
Griffith OW: Mammalian sulfur amino acid metabolism: an overview. Methods Enzymol. 1987;143:366-76.
Pubmed: 3309559
Pirkov I, Norbeck J, Gustafsson L, Albers E: A complete inventory of all enzymes in the eukaryotic methionine salvage pathway. FEBS J. 2008 Aug;275(16):4111-20. doi: 10.1111/j.1742-4658.2008.06552.x. Epub 2008 Jul 10.
Pubmed: 18625006
Thomas D, Surdin-Kerjan Y: Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32.
Pubmed: 9409150
Murakami Y, Naitou M, Hagiwara H, Shibata T, Ozawa M, Sasanuma S, Sasanuma M, Tsuchiya Y, Soeda E, Yokoyama K, et al.: Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat Genet. 1995 Jul;10(3):261-8. doi: 10.1038/ng0795-261.
Pubmed: 7670463
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Eki T, Naitou M, Hagiwara H, Ozawa M, Sasanuma SI, Sasanuma M, Tsuchiya Y, Shibata T, Hanaoka F, Murakami Y: Analysis of a 36.2 kb DNA sequence including the right telomere of chromosome VI from Saccharomyces cerevisiae. Yeast. 1996 Feb;12(2):149-67. doi: 10.1002/(SICI)1097-0061(199602)12:2%3C149::AID-YEA893%3E3.0.CO;2-G.
Pubmed: 8686379
Dietrich FS, Mulligan J, Hennessy K, Yelton MA, Allen E, Araujo R, Aviles E, Berno A, Brennan T, Carpenter J, Chen E, Cherry JM, Chung E, Duncan M, Guzman E, Hartzell G, Hunicke-Smith S, Hyman RW, Kayser A, Komp C, Lashkari D, Lew H, Lin D, Mosedale D, Davis RW, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome V. Nature. 1997 May 29;387(6632 Suppl):78-81.
Pubmed: 9169868
Boucherie H, Dujardin G, Kermorgant M, Monribot C, Slonimski P, Perrot M: Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene-protein index. Yeast. 1995 Jun 15;11(7):601-13. doi: 10.1002/yea.320110702.
Pubmed: 7483834
Thomas D, Surdin-Kerjan Y: SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J Biol Chem. 1987 Dec 5;262(34):16704-9.
Pubmed: 3316224
Johnston M, Hillier L, Riles L, Albermann K, Andre B, Ansorge W, Benes V, Bruckner M, Delius H, Dubois E, Dusterhoft A, Entian KD, Floeth M, Goffeau A, Hebling U, Heumann K, Heuss-Neitzel D, Hilbert H, Hilger F, Kleine K, Kotter P, Louis EJ, Messenguy F, Mewes HW, Hoheisel JD, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature. 1997 May 29;387(6632 Suppl):87-90.
Pubmed: 9169871
Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y: SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol. 1988 Dec;8(12):5132-9. doi: 10.1128/mcb.8.12.5132.
Pubmed: 3072475
Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75-8.
Pubmed: 9169867
Hu Y, Rolfs A, Bhullar B, Murthy TV, Zhu C, Berger MF, Camargo AA, Kelley F, McCarron S, Jepson D, Richardson A, Raphael J, Moreira D, Taycher E, Zuo D, Mohr S, Kane MF, Williamson J, Simpson A, Bulyk ML, Harlow E, Marsischky G, Kolodner RD, LaBaer J: Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res. 2007 Apr;17(4):536-43. doi: 10.1101/gr.6037607. Epub 2007 Feb 23.
Pubmed: 17322287
Iraqui I, Vissers S, Cartiaux M, Urrestarazu A: Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet. 1998 Jan;257(2):238-48. doi: 10.1007/s004380050644.
Pubmed: 9491083
Johnston M, Andrews S, Brinkman R, Cooper J, Ding H, Dover J, Du Z, Favello A, Fulton L, Gattung S, et al.: Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077-82. doi: 10.1126/science.8091229.
Pubmed: 8091229
Bowman S, Churcher C, Badcock K, Brown D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B: The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90-3.
Pubmed: 9169872
Melnick L, Sherman F: The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J Mol Biol. 1993 Oct 5;233(3):372-88. doi: 10.1006/jmbi.1993.1518.
Pubmed: 8411151
Zagulski M, Babinska B, Gromadka R, Migdalski A, Rytka J, Sulicka J, Herbert CJ: The sequence of 24.3 kb from chromosome X reveals five complete open reading frames, all of which correspond to new genes, and a tandem insertion of a Ty1 transposon. Yeast. 1995 Sep 30;11(12):1179-86. doi: 10.1002/yea.320111208.
Pubmed: 8619316
Galibert F, Alexandraki D, Baur A, Boles E, Chalwatzis N, Chuat JC, Coster F, Cziepluch C, De Haan M, Domdey H, Durand P, Entian KD, Gatius M, Goffeau A, Grivell LA, Hennemann A, Herbert CJ, Heumann K, Hilger F, Hollenberg CP, Huang ME, Jacq C, Jauniaux JC, Katsoulou C, Karpfinger-Hartl L, et al.: Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 1996 May 1;15(9):2031-49.
Pubmed: 8641269
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings