
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Threonine Metabolism
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-01-07
Last Updated: 2025-01-25
The biosynthesis of threonine starts with L-aspartic acid being phosphorylated by an ATP-driven aspartate kinase resulting in a release of an ADP and an L-aspartyl-4-phosphate. This compound interacts with a hydrogen ion through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP, and an L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through an NADPH-driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and an L-homoserine. L-Homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion, and an O-phosphohomoserine. The latter compound then interacts with a water molecule threonine synthase resulting in the release of a phosphate and an L-threonine. L-threonine is degraded into glycine and acetaldehyde by reacting with a threonine aldolase. Acetaldehyde can then be integrated into the mitochondria or stay in the cytosol. It is then degraded into acetyl-CoA through an aldehyde dehydrogenase.
References
Threonine Metabolism References
Monschau N, Stahmann KP, Sahm H, McNeil JB, Bognar AL: Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol Lett. 1997 May 1;150(1):55-60.
Pubmed: 9163906
Rafalski JA, Falco SC: Structure of the yeast HOM3 gene which encodes aspartokinase. J Biol Chem. 1988 Feb 15;263(5):2146-51.
Pubmed: 2892836
Rafalski JA, Falco SC: Structure of the yeast HOM3 gene which encodes aspartokinase. J Biol Chem. 1990 Sep 5;265(25):15346.
Pubmed: 2168408
Dietrich FS, Mulligan J, Hennessy K, Yelton MA, Allen E, Araujo R, Aviles E, Berno A, Brennan T, Carpenter J, Chen E, Cherry JM, Chung E, Duncan M, Guzman E, Hartzell G, Hunicke-Smith S, Hyman RW, Kayser A, Komp C, Lashkari D, Lew H, Lin D, Mosedale D, Davis RW, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome V. Nature. 1997 May 29;387(6632 Suppl):78-81.
Pubmed: 9169868
Aas SF, Rognes SE: Nucleotide sequence of the yeast THR4 gene encoding threonine synthase. Nucleic Acids Res. 1990 Feb 11;18(3):665. doi: 10.1093/nar/18.3.665.
Pubmed: 2408022
Mannhaupt G, van der Linden G, Vetter I, Maurer K, Pilz U, Planta R, Feldmann H: Analysis of the THR4 region on chromosome III of the yeast Saccharomyces cerevisiae. Yeast. 1990 Jul-Aug;6(4):353-61. doi: 10.1002/yea.320060408.
Pubmed: 2204248
Oliver SG, van der Aart QJ, Agostoni-Carbone ML, Aigle M, Alberghina L, Alexandraki D, Antoine G, Anwar R, Ballesta JP, Benit P, et al.: The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38-46. doi: 10.1038/357038a0.
Pubmed: 1574125
McNeil JB, McIntosh EM, Taylor BV, Zhang FR, Tang S, Bognar AL: Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem. 1994 Mar 25;269(12):9155-65.
Pubmed: 8132653
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Meaden PG, Dickinson FM, Mifsud A, Tessier W, Westwater J, Bussey H, Midgley M: The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast. 1997 Nov;13(14):1319-27. doi: 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T.
Pubmed: 9392076
Wang X, Mann CJ, Bai Y, Ni L, Weiner H: Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol. 1998 Feb;180(4):822-30.
Pubmed: 9473035
Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature. 1997 May 29;387(6632 Suppl):103-5.
Pubmed: 9169875
Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98-102.
Pubmed: 9169874
Chalmers RM, Keen JN, Fewson CA: Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions. Biochem J. 1991 Jan 1;273(Pt 1):99-107. doi: 10.1042/bj2730099.
Pubmed: 1989592
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings