
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Biosynthesis of Unsaturated Fatty Acids (Tetracosanoyl-CoA)
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-01-12
Last Updated: 2025-01-30
The biosynthesis of unsaturated fatty acids begins with palmitic acid interacting with ATP and Coenzyme A through an acyl-CoA synthetase resulting in the release of AMP, diphosphate and palmitoyl-CoA. This compound then enters the cycle of unsaturated fatty acid elongation This cycle starts with the acyl-CoA reacting with a hydrogen ion and a malonyl-CoA through a 3-oxo-stearoyl-CoA synthase resulting in the release of a coenzyme A, a carbon dioxide molecule and a 3-oxoacyl-CoA. The 3-oxoacyl-CoA then reacts with a hydrogen ion and an NADPH through a 3-oxoacyl-CoA reductase resulting in the release of an NADP and a (3R)-3-hydroxy-acyl-CoA. The resulting compound then reacts with a trans-2-enoyl-CoA hydratase 2 resulting in the release of water and trans-2,3-dehydroacyl-CoA. This compound then reacts with a hydrogen ion and a NADPH through a enoyl-CoA reductase resulting in the release of a NADP and a new acyl-CoA. The cycle goes from palmitoyl-CoA-->stearoyl-CoA-->eicosanoyl-CoA-->docosanoyl-CoA-->tetracosanoyl-CoA-->hexacosanoyl-CoA.
The long chain fatty acids are then incorporated into the sphingolipid pathway. The long chain fatty acid reacts with a phytosphingosine through a ceramide synthase resulting in the release of a hydrogen ion, a coenzyme A and a N-acyl-phytosphinganine.
References
Biosynthesis of Unsaturated Fatty Acids (Tetracosanoyl-CoA) References
Bagnat M, Simons K: Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae. Biol Chem. 2002 Oct;383(10):1475-80. doi: 10.1515/BC.2002.169.
Pubmed: 12452424
Dickson RC, Lester RL: Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta. 2002 Jun 13;1583(1):13-25.
Pubmed: 12069845
Funato K, Vallee B, Riezman H: Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. Biochemistry. 2002 Dec 24;41(51):15105-14.
Pubmed: 12484746
Dickson RC, Sumanasekera C, Lester RL: Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog Lipid Res. 2006 Nov;45(6):447-65. doi: 10.1016/j.plipres.2006.03.004. Epub 2006 Apr 21.
Pubmed: 16730802
Gaigg B, Toulmay A, Schneiter R: Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast. J Biol Chem. 2006 Nov 10;281(45):34135-45. doi: 10.1074/jbc.M603791200. Epub 2006 Sep 15.
Pubmed: 16980694
Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Dunn T: Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol. 2001 Jan;21(1):109-25. doi: 10.1128/MCB.21.1.109-125.2001.
Pubmed: 11113186
Tehlivets O, Scheuringer K, Kohlwein SD: Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta. 2007 Mar;1771(3):255-70. doi: 10.1016/j.bbalip.2006.07.004. Epub 2006 Jul 21.
Pubmed: 16950653
Johnson DR, Knoll LJ, Levin DE, Gordon JI: Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J Cell Biol. 1994 Nov;127(3):751-62.
Pubmed: 7962057
Johnson DR, Knoll LJ, Rowley N, Gordon JI: Genetic analysis of the role of Saccharomyces cerevisiae acyl-CoA synthetase genes in regulating protein N-myristoylation. J Biol Chem. 1994 Jul 8;269(27):18037-46.
Pubmed: 8027063
Jones JM, Nau K, Geraghty MT, Erdmann R, Gould SJ: Identification of peroxisomal acyl-CoA thioesterases in yeast and humans. J Biol Chem. 1999 Apr 2;274(14):9216-23.
Pubmed: 10092594
Kal AJ, Hettema EH, van den Berg M, Koerkamp MG, van Ijlst L, Distel B, Tabak HF: In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Cell Biochem Biophys. 2000;32 Spring:1-8.
Pubmed: 11330035
Knoll LJ, Johnson DR, Gordon JI: Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p. J Biol Chem. 1994 Jun 10;269(23):16348-56.
Pubmed: 8206942
van Roermund CW, Ijlst L, Majczak W, Waterham HR, Folkerts H, Wanders RJ, Hellingwerf KJ: Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae. J Biol Chem. 2012 Jun 8;287(24):20144-53. doi: 10.1074/jbc.M111.332833. Epub 2012 Apr 9.
Pubmed: 22493507
Oh CS, Toke DA, Mandala S, Martin CE: ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem. 1997 Jul 11;272(28):17376-84. doi: 10.1074/jbc.272.28.17376.
Pubmed: 9211877
Garcia-Arranz M, Maldonado AM, Mazon MJ, Portillo F: Transcriptional control of yeast plasma membrane H(+)-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation. J Biol Chem. 1994 Jul 8;269(27):18076-82.
Pubmed: 8027068
Silve S, Leplatois P, Josse A, Dupuy PH, Lanau C, Kaghad M, Dhers C, Picard C, Rahier A, Taton M, Le Fur G, Caput D, Ferrara P, Loison G: The immunosuppressant SR 31747 blocks cell proliferation by inhibiting a steroid isomerase in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun;16(6):2719-27. doi: 10.1128/mcb.16.6.2719.
Pubmed: 8649379
Churcher C, Bowman S, Badcock K, Bankier A, Brown D, Chillingworth T, Connor R, Devlin K, Gentles S, Hamlin N, Harris D, Horsnell T, Hunt S, Jagels K, Jones M, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Rowley N, Skelton J, Smith V, Barrell B, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IX. Nature. 1997 May 29;387(6632 Suppl):84-7.
Pubmed: 9169870
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Harington A, Schwarz E, Slonimski PP, Herbert CJ: Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae. EMBO J. 1994 Dec 1;13(23):5531-8.
Pubmed: 7988550
Dietrich FS, Mulligan J, Hennessy K, Yelton MA, Allen E, Araujo R, Aviles E, Berno A, Brennan T, Carpenter J, Chen E, Cherry JM, Chung E, Duncan M, Guzman E, Hartzell G, Hunicke-Smith S, Hyman RW, Kayser A, Komp C, Lashkari D, Lew H, Lin D, Mosedale D, Davis RW, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome V. Nature. 1997 May 29;387(6632 Suppl):78-81.
Pubmed: 9169868
Urban-Grimal D, Volland C, Garnier T, Dehoux P, Labbe-Bois R: The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in Saccharomyces cerevisiae. Eur J Biochem. 1986 May 2;156(3):511-9. doi: 10.1111/j.1432-1033.1986.tb09610.x.
Pubmed: 3516694
Keng T, Guarente L: Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9113-7. doi: 10.1073/pnas.84.24.9113.
Pubmed: 3321068
Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75-8.
Pubmed: 9169867
Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang X, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM: Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12825-30. doi: 10.1073/pnas.0701291104. Epub 2007 Jul 25.
Pubmed: 17652520
This pathway was generated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Generated from SMP0002324
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings