Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ethanol Fermentation
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-02-08
Last Updated: 2025-01-25
Pyruvic acid can produce ethanol (the ending product of glycolysis pathway) through two-step reactions, and result in ethanol fermentation. Glycolysis is a metabolic pathway with sequence of ten reactions involving ten intermediate compounds that converts glucose to pyruvate. Glycolysis release free energy for forming high energy compound such as ATP and NADH. Glycolysis is consisted of two phases, which one of them is chemical priming phase and second phase is energy-yielding phase. As the starting compound of chemical priming phase, D-glucose can be obtained from galactose metabolism or imported by monosaccharide-sensing protein 1 from outside of cell. D-Glucose is catalyzed by probable hexokinase-like 2 protein to form glucose 6-phosphate which is powered by ATP. Glucose 6-phosphate transformed to fructose 6-phosphate by glucose-6-phosphate isomerase, which the later compound will be converted to fructose 1,6-bisphosphate, which is the last reaction of chemical priming phase by 6-phosphofructokinase with cofactor magnesium, and it is also powered by ATP. Before entering the second phase, aldolase catalyzing the hydrolysis of F1,6BP into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Dihydroxyacetone phosphate and glyceraldehyde 3-phosphate can convert to each other bidirectionally by facilitation of triosephosphate isomerase. The second phase of glycolysis is yielding-energy phase that produce ATP and NADH. At the first step, D-glyceraldehyde 3-phosphate is catalyzed to glyceric acid 1,3-biphosphate by glyceraldehyde-3-phosphate dehydrogenase with NAD, which also generate NADH. ATP is generated through the reaction that convert glyceric acid 1,3-biphosphate to 3-phosphoglyceric acid. Phosphoglycerate mutase 2 catalyze 3-phosphoglyceric acid to 2-Phospho-D-glyceric acid, and alpha-enolase with cofactor magnesium catalyzes 2-Phospho-D-glyceric acid to phosphoenolpyruvic acid. Eventually, plastidial pyruvate kinase 4 converts phosphoenolpyruvic acid to pyruvate with cofactor magnesium and potassium and ADP. Pyruvate will undergo pyruvate metabolism, tyrosine metabolism and pantothenate and CoA biosynthesis.
References
Ethanol Fermentation References
Fábio Faria-Oliveira, Sónia Puga and Célia Ferreira (2013). Yeast: World’s Finest Chef, Food Industry, Dr. Innocenzo Muzzalupo (Ed.), ISBN: 978-953-51-0911-2, InTech, DOI: 10.5772/53156. Available from: http://www.intechopen.com/books/food-industry/yeast-world-s-finest-chef
Kopetzki E, Entian KD, Mecke D: Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae. Gene. 1985;39(1):95-101. doi: 10.1016/0378-1119(85)90113-1.
Pubmed: 3908224
Stachelek C, Stachelek J, Swan J, Botstein D, Konigsberg W: Identification, cloning and sequence determination of the genes specifying hexokinase A and B from yeast. Nucleic Acids Res. 1986 Jan 24;14(2):945-63. doi: 10.1093/nar/14.2.945.
Pubmed: 3003701
Murakami Y, Naitou M, Hagiwara H, Shibata T, Ozawa M, Sasanuma S, Sasanuma M, Tsuchiya Y, Soeda E, Yokoyama K, et al.: Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat Genet. 1995 Jul;10(3):261-8. doi: 10.1038/ng0795-261.
Pubmed: 7670463
Schaaff-Gerstenschlager I, Schindwolf T, Lehnert W, Rose M, Zimmermann FK: Sequence and functional analysis of a 7.2 kb fragment of Saccharomyces cerevisiae chromosome II including GAL7 and GAL10 and a new essential open reading frame. Yeast. 1995 Jan;11(1):79-83. doi: 10.1002/yea.320110110.
Pubmed: 7762304
Johnston M, Davis RW: Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Aug;4(8):1440-8. doi: 10.1128/mcb.4.8.1440.
Pubmed: 6092912
Feldmann H, Aigle M, Aljinovic G, Andre B, Baclet MC, Barthe C, Baur A, Becam AM, Biteau N, Boles E, Brandt T, Brendel M, Bruckner M, Bussereau F, Christiansen C, Contreras R, Crouzet M, Cziepluch C, Demolis N, Delaveau T, Doignon F, Domdey H, Dusterhus S, Dubois E, Dujon B, El Bakkoury M, Entian KD, Feurmann M, Fiers W, Fobo GM, Fritz C, Gassenhuber H, Glandsdorff N, Goffeau A, Grivell LA, de Haan M, Hein C, Herbert CJ, Hollenberg CP, Holmstrom K, Jacq C, Jacquet M, Jauniaux JC, Jonniaux JL, Kallesoe T, Kiesau P, Kirchrath L, Kotter P, Korol S, Liebl S, Logghe M, Lohan AJ, Louis EJ, Li ZY, Maat MJ, Mallet L, Mannhaupt G, Messenguy F, Miosga T, Molemans F, Muller S, Nasr F, Obermaier B, Perea J, Pierard A, Piravandi E, Pohl FM, Pohl TM, Potier S, Proft M, Purnelle B, Ramezani Rad M, Rieger M, Rose M, Schaaff-Gerstenschlager I, Scherens B, Schwarzlose C, Skala J, Slonimski PP, Smits PH, Souciet JL, Steensma HY, Stucka R, Urrestarazu A, van der Aart QJ, van Dyck L, Vassarotti A, Vetter I, Vierendeels F, Vissers S, Wagner G, de Wergifosse P, Wolfe KH, Zagulski M, Zimmermann FK, Mewes HW, Kleine K: Complete DNA sequence of yeast chromosome II. EMBO J. 1994 Dec 15;13(24):5795-809.
Pubmed: 7813418
Heinisch J, Ritzel RG, von Borstel RC, Aguilera A, Rodicio R, Zimmermann FK: The phosphofructokinase genes of yeast evolved from two duplication events. Gene. 1989 May 30;78(2):309-21. doi: 10.1016/0378-1119(89)90233-3.
Pubmed: 2528496
Bowman S, Churcher C, Badcock K, Brown D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B: The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90-3.
Pubmed: 9169872
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Holland JP, Holland MJ: The primary structure of a glyceraldehyde-3-phosphate dehydrogenase gene from Saccharomyces cerevisiae. J Biol Chem. 1979 Oct 10;254(19):9839-45.
Pubmed: 385592
Arroyo J, Garcia-Gonzalez M, Garcia-Saez MI, Sanchez M, Nombela C: The complete sequence of a 9037 bp DNA fragment of the right arm of Saccharomyces cerevisiae chromosome VII. Yeast. 1995 May;11(6):587-91. doi: 10.1002/yea.320110609.
Pubmed: 7645350
Tettelin H, Agostoni Carbone ML, Albermann K, Albers M, Arroyo J, Backes U, Barreiros T, Bertani I, Bjourson AJ, Bruckner M, Bruschi CV, Carignani G, Castagnoli L, Cerdan E, Clemente ML, Coblenz A, Coglievina M, Coissac E, Defoor E, Del Bino S, Delius H, Delneri D, de Wergifosse P, Dujon B, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature. 1997 May 29;387(6632 Suppl):81-4.
Pubmed: 9169869
Fothergill LA, Harkins RN: The amino acid sequence of yeast phosphoglycerate mutase. Proc R Soc Lond B Biol Sci. 1982 Apr 22;215(1198):19-44. doi: 10.1098/rspb.1982.0026.
Pubmed: 6127696
White MF, Fothergill-Gilmore LA: Sequence of the gene encoding phosphoglycerate mutase from Saccharomyces cerevisiae. FEBS Lett. 1988 Mar 14;229(2):383-7. doi: 10.1016/0014-5793(88)81161-x.
Pubmed: 2831102
Heinisch J, von Borstel RC, Rodicio R: Sequence and localization of the gene encoding yeast phosphoglycerate mutase. Curr Genet. 1991 Jul;20(1-2):167-71.
Pubmed: 1834353
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings