Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Sulfur Metabolism
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-02-24
Last Updated: 2019-08-14
The sulfur metabolism pathway starts in three possible ways. Sulfate is converted by the sulfate adenylyltransferase enzymatic complex to adenosine phosphosulfate through the addition of adenine from a molecule of ATP, along with one phosphate group. Adenosine phosphosulfate is further converted to phoaphoadenosine phosphosulfate through an ATP hydrolysis and dehydrogenation reaction by the adenylyl-sulfate kinase. Phoaphoadenosine phosphosulfate is finally dehydrogenated and converted to sulfite by phosphoadenosine phosphosulfate reductase. This reaction requires magnesium, and adenosine 3',5'-diphosphate is the bi-product. A thioredoxin is also oxidized.
Sulfite next undergoes a series of reactions that lead to the production of pyruvic acid, which is a precursor for pathways such as gluconeogenesis. The first reaction in this series is the conversion of sulfite to hydrogen sulfide through hygrogenation and the deoxygenation of sulfite to form a water molecule. The reaction is catalyzed by the sulfite reductase [NADPH] flavoprotein alpha and beta components. Siroheme, 4Fe-4S, flavin mononucleotide, and FAD function as cofactors or prosthetic groups. Hydrogen sulfide next undergoes dehydrogenation in a reversible reaction to form L-Cysteine and acetic acid, via the cysteine synthase complex and the coenzyme pyridoxal 5'-phosphate. On the other hand L-cysteine can also be formed through homocysteine. L-Cysteine is dehydrogenated and converted to 2-aminoacrylic acid (a bronsted acid) and hydrogen sulfide(which may be reused) by a larger enzymatic complex composed of cysteine synthase A/B, protein malY, cystathionine-β-lyase, and tryptophanase, along with the coenzyme pyridoxal 5'-phosphate. 2-aminoacrylic acid isomerizes to 2-iminopropanoate, which along with a water molecule and a hydrogen ion is lastly converted to pyruvic acid and ammonium in a spontaneous fashion.
The second possible initial starting point for sulfur metabolism is taurine(an alternate sulfur source oxoglutaric acid, and oxygen are converted to sulfite by the alpha-ketoglutarate-dependent taurine dioxygenase. Carbon dioxide, succinic acid, and aminoacetaldehyde are bi-products of this reaction. Sulfite next enters pyruvic acid synthesis as already described.
The third variant of sulfur metabolism starts with thiosulfate releasing Sulfite is next converted to pyruvic acid by the process already described.
References
Sulfur Metabolism References
Thomas D, Surdin-Kerjan Y: Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32.
Pubmed: 9409150
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. doi: 10.1093/nar/gkv1070. Epub 2015 Oct 17.
Pubmed: 26476454
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27-30.
Pubmed: 10592173
Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD: Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 1996 Jun 17;15(12):3127-34.
Pubmed: 8670813
Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG: Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene. 1988 Jun 15;66(1):45-54. doi: 10.1016/0378-1119(88)90223-5.
Pubmed: 3047009
Kushnirov VV, Ter-Avanesyan MD, Surguchov AP, Smirnov VN, Inge-Vechtomov SG: Localization of possible functional domains in sup2 gene product of the yeast Saccharomyces cerevisiae. FEBS Lett. 1987 May 11;215(2):257-60. doi: 10.1016/0014-5793(87)80157-6.
Pubmed: 3556215
Korch C, Mountain HA, Bystrom AS: Cloning, nucleotide sequence, and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae. Mol Gen Genet. 1991 Sep;229(1):96-108. doi: 10.1007/bf00264218.
Pubmed: 1654509
Dusterhoft A, Philippsen P: DNA sequencing and analysis of a 24.7 kb segment encompassing centromere CEN11 of Saccharomyces cerevisiae reveals nine previously unknown open reading frames. Yeast. 1992 Sep;8(9):749-59. doi: 10.1002/yea.320080908.
Pubmed: 1441752
Dujon B, Alexandraki D, Andre B, Ansorge W, Baladron V, Ballesta JP, Banrevi A, Bolle PA, Bolotin-Fukuhara M, Bossier P, Bou G, Boyer J, Bultrago MJ, Cheret G, Colleaux L, Dalgnan-Fornler B, del Rey F, Dlon C, Domdey H, Dusterhoft A, Dusterhus S, Entlan KD, Erfle H, Esteban PF, Feldmann H, Fernandes L, Robo GM, Fritz C, Fukuhara H, Gabel C, Gaillon L, Carcia-Cantalejo JM, Garcia-Ramirez JJ, Gent NE, Ghazvini M, Goffeau A, Gonzalez A, Grothues D, Guerreiro P, Hegemann J, Hewitt N, Hilger F, Hollenberg CP, Horaitis O, Indge KJ, Jacquier A, James CM, Jauniaux C, Jimenez A, Keuchel H, Kirchrath L, Kleine K, Kotter P, Legrain P, Liebl S, Louis EJ, Maia e Silva A, Marck C, Monnier AL, Mostl D, Muller S, Obermaier B, Oliver SG, Pallier C, Pascolo S, Pfeiffer F, Philippsen P, Planta RJ, Pohl FM, Pohl TM, Pohlmann R, Portetelle D, Purnelle B, Puzos V, Ramezani Rad M, Rasmussen SW, Remacha M, Revuelta JL, Richard GF, Rieger M, Rodrigues-Pousada C, Rose M, Rupp T, Santos MA, Schwager C, Sensen C, Skala J, Soares H, Sor F, Stegemann J, Tettelin H, Thierry A, Tzermia M, Urrestarazu LA, van Dyck L, Van Vliet-Reedijk JC, Valens M, Vandenbo M, Vilela C, Vissers S, von Wettstein D, Voss H, Wiemann S, Xu G, Zimmermann J, Haasemann M, Becker I, Mewes HW: Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371-8. doi: 10.1038/369371a0.
Pubmed: 8196765
Thomas D, Barbey R, Surdin-Kerjan Y: Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem. 1990 Sep 15;265(26):15518-24.
Pubmed: 2203779
Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature. 1997 May 29;387(6632 Suppl):103-5.
Pubmed: 9169875
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Johnston M, Hillier L, Riles L, Albermann K, Andre B, Ansorge W, Benes V, Bruckner M, Delius H, Dubois E, Dusterhoft A, Entian KD, Floeth M, Goffeau A, Hebling U, Heumann K, Heuss-Neitzel D, Hilbert H, Hilger F, Kleine K, Kotter P, Louis EJ, Messenguy F, Mewes HW, Hoheisel JD, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature. 1997 May 29;387(6632 Suppl):87-90.
Pubmed: 9169871
Hu Y, Rolfs A, Bhullar B, Murthy TV, Zhu C, Berger MF, Camargo AA, Kelley F, McCarron S, Jepson D, Richardson A, Raphael J, Moreira D, Taycher E, Zuo D, Mohr S, Kane MF, Williamson J, Simpson A, Bulyk ML, Harlow E, Marsischky G, Kolodner RD, LaBaer J: Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res. 2007 Apr;17(4):536-43. doi: 10.1101/gr.6037607. Epub 2007 Feb 23.
Pubmed: 17322287
Poirey R, Jauniaux JC: Sequencing analysis of a 36.8 kb fragment of yeast chromosome XV reveals 26 open reading frames including SEC63, CDC31, SUG2, GCD1, RBL2, PNT1, PAC1 and VPH1. Yeast. 1997 Apr;13(5):483-7. doi: 10.1002/(SICI)1097-0061(199704)13:5<483::AID-YEA105>3.0.CO;2-U.
Pubmed: 9153759
Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98-102.
Pubmed: 9169874
Chanet R, Heude M: Characterization of mutations that are synthetic lethal with pol3-13, a mutated allele of DNA polymerase delta in Saccharomyces cerevisiae. Curr Genet. 2003 Aug;43(5):337-50. doi: 10.1007/s00294-003-0407-2. Epub 2003 May 21.
Pubmed: 12759774
Galibert F, Alexandraki D, Baur A, Boles E, Chalwatzis N, Chuat JC, Coster F, Cziepluch C, De Haan M, Domdey H, Durand P, Entian KD, Gatius M, Goffeau A, Grivell LA, Hennemann A, Herbert CJ, Heumann K, Hilger F, Hollenberg CP, Huang ME, Jacq C, Jauniaux JC, Katsoulou C, Karpfinger-Hartl L, et al.: Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 1996 May 1;15(9):2031-49.
Pubmed: 8641269
Kobayashi K, Yoshimoto A: Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta. 1982 Aug 10;705(3):348-56. doi: 10.1016/0167-4838(82)90257-6.
Pubmed: 6751400
Rieger M, Bruckner M, Schafer M, Muller-Auer S: Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII. Yeast. 1997 Sep 15;13(11):1077-90. doi: 10.1002/(SICI)1097-0061(19970915)13:11<1077::AID-YEA152>3.0.CO;2-Y.
Pubmed: 9290212
Tettelin H, Agostoni Carbone ML, Albermann K, Albers M, Arroyo J, Backes U, Barreiros T, Bertani I, Bjourson AJ, Bruckner M, Bruschi CV, Carignani G, Castagnoli L, Cerdan E, Clemente ML, Coblenz A, Coglievina M, Coissac E, Defoor E, Del Bino S, Delius H, Delneri D, de Wergifosse P, Dujon B, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature. 1997 May 29;387(6632 Suppl):81-4.
Pubmed: 9169869
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings