
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Terpenoid Backbone Biosynthesis
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-02-25
Last Updated: 2025-01-30
The biosynthesis of steroids begins with acetyl coa being turned into acetoacetyl through a acetoacetyl CoA thiolase. Acetoacetyl -CoA reacts with an acetyl-CoA and water through a 3-hydroxy 3-methylglutaryl coenzyme A synthase resulting in the release of coenzyme A, hydrogen ion and (S)-3-hydroxy-3-methylglutaryl-CoA. The latter compound reacts with NADPH and a hydrogen ion through a 3-hydroxy-3-methylglutaryl-coenzyme A resulting in the release of coenzyme A , NADP and mevalonate. Mevalonate is then phosphorylated through an ATP driven kinase mevalonate kinase resulting in the release of ADP, hydrogen ion and mevalonate 5-phosphate. The latter compound is phosphorylated through an ATP driven kinase, phosphomevalonate kinase resulting in the release of ADP and mevalonate diphosphate. This latter compound then reacts with an ATP driven mevalonate diphosphate decarboxylase resulting in the release of ADP, carbon dioxide, a phosphate and a isopentenyl diphosphate. The latter compound can be isomerized into dimethylallyl diphosphate or reacth with a dimethylallyl diphosphate to produce geranyl diphosphate. Geranyl diphosphate reacts with a isopentenyl through a farnesyl diphosphate synthase resulting in the release of diphosphate and farnesyl diphosphate.
Farnesyl diphosphate has three different fates:
1.-Producing hexaprenyl diphosphate in the mitocondrial inner membrane by reacting with 3 isopentenyl diphosphate
2.-Producing geranylgeranyl diphosphate in the cytoplasm by reacting with one isopentenyl diphosphate
3.-Producing a dolichol precursor in the ER by reacting with 13 isopentenyl diphosphates.
References
Terpenoid Backbone Biosynthesis References
Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A: Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes Cells. 2001 Jun;6(6):495-506.
Pubmed: 11442630
Rodriguez-Concepcion M, Boronat A: Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 2002 Nov;130(3):1079-89. doi: 10.1104/pp.007138.
Pubmed: 12427975
Anderson MS, Yarger JG, Burck CL, Poulter CD: Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J Biol Chem. 1989 Nov 15;264(32):19176-84.
Pubmed: 2681213
Ashby MN, Edwards PA: Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. J Biol Chem. 1990 Aug 5;265(22):13157-64.
Pubmed: 2198286
Feldmann H, Aigle M, Aljinovic G, Andre B, Baclet MC, Barthe C, Baur A, Becam AM, Biteau N, Boles E, Brandt T, Brendel M, Bruckner M, Bussereau F, Christiansen C, Contreras R, Crouzet M, Cziepluch C, Demolis N, Delaveau T, Doignon F, Domdey H, Dusterhus S, Dubois E, Dujon B, El Bakkoury M, Entian KD, Feurmann M, Fiers W, Fobo GM, Fritz C, Gassenhuber H, Glandsdorff N, Goffeau A, Grivell LA, de Haan M, Hein C, Herbert CJ, Hollenberg CP, Holmstrom K, Jacq C, Jacquet M, Jauniaux JC, Jonniaux JL, Kallesoe T, Kiesau P, Kirchrath L, Kotter P, Korol S, Liebl S, Logghe M, Lohan AJ, Louis EJ, Li ZY, Maat MJ, Mallet L, Mannhaupt G, Messenguy F, Miosga T, Molemans F, Muller S, Nasr F, Obermaier B, Perea J, Pierard A, Piravandi E, Pohl FM, Pohl TM, Potier S, Proft M, Purnelle B, Ramezani Rad M, Rieger M, Rose M, Schaaff-Gerstenschlager I, Scherens B, Schwarzlose C, Skala J, Slonimski PP, Smits PH, Souciet JL, Steensma HY, Stucka R, Urrestarazu A, van der Aart QJ, van Dyck L, Vassarotti A, Vetter I, Vierendeels F, Vissers S, Wagner G, de Wergifosse P, Wolfe KH, Zagulski M, Zimmermann FK, Mewes HW, Kleine K: Complete DNA sequence of yeast chromosome II. EMBO J. 1994 Dec 15;13(24):5795-809.
Pubmed: 7813418
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Sato M, Sato K, Nishikawa S, Hirata A, Kato J, Nakano A: The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol. 1999 Jan;19(1):471-83. doi: 10.1128/mcb.19.1.471.
Pubmed: 9858571
Wolfe KH, Lohan AJ: Sequence around the centromere of Saccharomyces cerevisiae chromosome II: similarity of CEN2 to CEN4. Yeast. 1994 Apr;10 Suppl A:S41-6. doi: 10.1002/yea.320100006.
Pubmed: 8091860
Verhasselt P, Voet M, Volckaert G: New open reading frames, one of which is similar to the nifV gene of Azotobacter vinelandii, found on a 12.5 kbp fragment of chromosome IV of Saccharomyces cerevisiae. Yeast. 1995 Aug;11(10):961-6. doi: 10.1002/yea.320111007.
Pubmed: 8533471
Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75-8.
Pubmed: 9169867
Bowman S, Churcher C, Badcock K, Brown D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B: The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90-3.
Pubmed: 9169872
Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature. 2003 Oct 16;425(6959):737-41. doi: 10.1038/nature02046.
Pubmed: 14562106
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings