
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Vitamin B1/Thiamine Metabolism
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-02-25
Last Updated: 2024-11-18
The biosynthesis of thiamine begins with pyrithiamine reacting with thiaminase 2 resulting in the release of 4-Amino-5-hydroxymethyl-2-methylpyrimidine. The latter compound reacts with a hydroxymethylpyrimidine/phosphomethylpyrimidine kinase resulting in the release of 4-amino-2-methyl-5-phosphomethylpyrimidine. The latter compound reacts with a hydroxymethylpyrimidine/phosphomethylpyrimidine kinase resulting in the release of 2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate. The latter compound reacts with 4-methyl-5-(2-phosphonooxyethyl)thiazole, a product of oxythiamine metabolism, through a Thiamine biosynthetic bifunctional enzyme resultin in the release of a Thiamine monophosphate. The latter compound is phosphatased through a acid phosphatase complex resulting in the release of thiamine. The latter compound is phosphorylated through a thiamin pyrophosphokinase resulting in the release of thiamine pyrophosphate.
References
Vitamin B1/Thiamine Metabolism References
French JB, Begley TP, Ealick SE: Structure of trifunctional THI20 from yeast. Acta Crystallogr D Biol Crystallogr. 2011 Sep;67(Pt 9):784-91. doi: 10.1107/S0907444911024814. Epub 2011 Aug 9.
Pubmed: 21904031
Haas AL, Laun NP, Begley TP: Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities. Bioorg Chem. 2005 Aug;33(4):338-44. doi: 10.1016/j.bioorg.2005.04.001.
Pubmed: 15967475
Iwashima A, Nishino H, Nose Y: Carrier-mediated transport of thiamine in baker's yeast. Biochim Biophys Acta. 1973 Dec 13;330(2):222-34.
Pubmed: 4591128
Iwashima A, Yoshioka K, Nishimura H, Nosaka K: Reversal of pyrithiamine-induced growth inhibition of Saccharomyces cerevisiae by oxythiamine. Experientia. 1984 Jun 15;40(6):582-3.
Pubmed: 6373358
Iwashima A, Nosaka K, Nishimura H, Kimura Y: Some properties of a Saccharomyces cerevisiae mutant resistant to 2-amino-4-methyl-5-beta-hydroxyethylthiazole. J Gen Microbiol. 1986 Jun;132(6):1541-6. doi: 10.1099/00221287-132-6-1541.
Pubmed: 3027234
Iwashima A, Kawasaki Y, Kimura Y: Transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine in Saccharomyces cerevisiae. Biochim Biophys Acta. 1990 Feb 28;1022(2):211-4.
Pubmed: 2407290
Kimura Y, Iwashima A: Occurrence of thiaminase II in Saccharomyces cerevisiae. Experientia. 1987 Aug 15;43(8):888-90.
Pubmed: 3305065
Kowalska E, Kozik A: The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell Mol Biol Lett. 2008;13(2):271-82. doi: 10.2478/s11658-007-0055-5. Epub 2008 Apr 10.
Pubmed: 18161008
Onozuka M, Konno H, Kawasaki Y, Akaji K, Nosaka K: Involvement of thiaminase II encoded by the THI20 gene in thiamin salvage of Saccharomyces cerevisiae. FEMS Yeast Res. 2008 Mar;8(2):266-75. doi: 10.1111/j.1567-1364.2007.00333.x. Epub 2007 Nov 19.
Pubmed: 18028398
Baker LJ, Dorocke JA, Harris RA, Timm DE: The crystal structure of yeast thiamin pyrophosphokinase. Structure. 2001 Jun;9(6):539-46.
Pubmed: 11435118
Kawasaki Y: Copurification of hydroxyethylthiazole kinase and thiamine-phosphate pyrophosphorylase of Saccharomyces cerevisiae: characterization of hydroxyethylthiazole kinase as a bifunctional enzyme in the thiamine biosynthetic pathway. J Bacteriol. 1993 Aug;175(16):5153-8.
Pubmed: 8394314
Nosaka K, Nishimura H, Kawasaki Y, Tsujihara T, Iwashima A: Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem. 1994 Dec 2;269(48):30510-6.
Pubmed: 7982968
Mannhaupt G, Vetter I, Schwarzlose C, Mitzel S, Feldmann H: Analysis of a 26 kb region on the left arm of yeast chromosome XV. Yeast. 1996 Jan;12(1):67-76. doi: 10.1002/(SICI)1097-0061(199601)12:1%3C67::AID-YEA884%3E3.0.CO;2-F.
Pubmed: 8789261
Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98-102.
Pubmed: 9169874
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature. 1997 May 29;387(6632 Suppl):103-5.
Pubmed: 9169875
Llorente B, Fairhead C, Dujon B: Genetic redundancy and gene fusion in the genome of the Baker's yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol Microbiol. 1999 Jun;32(6):1140-52. doi: 10.1046/j.1365-2958.1999.01412.x.
Pubmed: 10383756
Johnston M, Andrews S, Brinkman R, Cooper J, Ding H, Dover J, Du Z, Favello A, Fulton L, Gattung S, et al.: Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077-82. doi: 10.1126/science.8091229.
Pubmed: 8091229
Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature. 2003 Oct 16;425(6959):737-41. doi: 10.1038/nature02046.
Pubmed: 14562106
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings