Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Leucine Degradation
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-02-29
Last Updated: 2019-08-14
The degradation of L-leucine starts either in the mitochondria or the cytosol. L-leucine reacts with 2-oxoglutarate through a branch-chain amino acid aminotransferase resulting in the release of ketoleucine and glutamate. The latter compound reacts with ketoisocaproate decarboxylase resulting in the release of carbon dioxide and 3-methylbutanal. The latter compound can then be turned into 3-methylbutanol through a alcohol dehydrogenase
References
Leucine Degradation References
Dickinson JR: Pathways of leucine and valine catabolism in yeast. Methods Enzymol. 2000;324:80-92.
Pubmed: 10989420
Dickinson JR, Salgado LE, Hewlins MJ: The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem. 2003 Mar 7;278(10):8028-34. doi: 10.1074/jbc.M211914200. Epub 2002 Dec 23.
Pubmed: 12499363
Dickinson JR, Harrison SJ, Hewlins MJ: An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem. 1998 Oct 2;273(40):25751-6.
Pubmed: 9748245
Eden A, Simchen G, Benvenisty N: Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem. 1996 Aug 23;271(34):20242-5.
Pubmed: 8702755
Kispal G, Steiner H, Court DA, Rolinski B, Lill R: Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem. 1996 Oct 4;271(40):24458-64.
Pubmed: 8798704
Kispal G, Steiner H, Court DA, Rolinski B, Lill R: Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem. 1996 Oct 4;271(40):24458-64. doi: 10.1074/jbc.271.40.24458.
Pubmed: 8798704
Johnston M, Andrews S, Brinkman R, Cooper J, Ding H, Dover J, Du Z, Favello A, Fulton L, Gattung S, et al.: Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077-82. doi: 10.1126/science.8091229.
Pubmed: 8091229
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Galibert F, Alexandraki D, Baur A, Boles E, Chalwatzis N, Chuat JC, Coster F, Cziepluch C, De Haan M, Domdey H, Durand P, Entian KD, Gatius M, Goffeau A, Grivell LA, Hennemann A, Herbert CJ, Heumann K, Hilger F, Hollenberg CP, Huang ME, Jacq C, Jauniaux JC, Katsoulou C, Karpfinger-Hartl L, et al.: Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 1996 May 1;15(9):2031-49.
Pubmed: 8641269
Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75-8.
Pubmed: 9169867
Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A: A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol. 1992 Jul;174(14):4701-6. doi: 10.1128/jb.174.14.4701-4706.1992.
Pubmed: 1624458
Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT: Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol. 2005 Jun;71(6):3276-84. doi: 10.1128/AEM.71.6.3276-3284.2005.
Pubmed: 15933030
Oliver SG, van der Aart QJ, Agostoni-Carbone ML, Aigle M, Alberghina L, Alexandraki D, Antoine G, Anwar R, Ballesta JP, Benit P, et al.: The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38-46. doi: 10.1038/357038a0.
Pubmed: 1574125
Larroy C, Pares X, Biosca JA: Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem. 2002 Nov;269(22):5738-45. doi: 10.1046/j.1432-1033.2002.03296.x.
Pubmed: 12423374
Bowman S, Churcher C, Badcock K, Brown D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B: The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90-3.
Pubmed: 9169872
Valencia E, Rosell A, Larroy C, Farres J, Biosca JA, Fita I, Pares X, Ochoa WF: Crystallization and preliminary X-ray analysis of NADP(H)-dependent alcohol dehydrogenases from Saccharomyces cerevisiae and Rana perezi. Acta Crystallogr D Biol Crystallogr. 2003 Feb;59(Pt 2):334-7. doi: 10.1107/s090744490201661x. Epub 2003 Jan 23.
Pubmed: 12554944
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings