Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Choline Metabolism
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-03-03
Last Updated: 2019-08-14
The metabolism of choline containing lipids begins with glycerone phosphate either reacting with glycerol-3-phosphate dehydrogenase resulting in the release of glycerol-3-phosphate or it can react with glycerol-3-phosphate O-acyltransferase / dihydroxyacetone phosphate acyltransferase resulting in the release of a 1-acylglycerone 3-phosphate. Glycerol-3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of an acyl glycerol phosphate. 1-acylglycerone 3-phosphate 1-acyl dihydroxyacetone phosphate reductase resulting in the release of a acyl glycerol phosphate. The latter compound then reacts with a oleoyl-CoA: lysophosphatidate acyltransferase resulting in the release of a phosphatidic acid. The latter compound reacts with Phosphatidic acid phosphohydrolase 1 resulting in the release of diacyl glycerol. This compound can be metabolized through a CTP-dependent diacylglycerol kinase 1 resulting in the release of a phosphatidic acid.
Phosphatidylcholine is degraded by a phospholipase resulting in the release of choline and phosphatidic acid.
Phosphatidylcholine can react with lysophospholipase resulting in the release of two fatty acids and a glycerophosphocholine. The latter compound reacts with a glycerophosphodiester phosphodiesterase resulting in the release of glycerol 3-phosphate and choline. Choline is phosphorylated through a choline kinase resulting in the release of phosphorycholine which can react with choline-phosphate cytidyltransferase resulting in the release of citicoline. The latter compound reacts with a diacylglycerol through a diacylglycerol cholinephosphotransferase resulting in the release of a phosphatidylcholine.
References
Choline Metabolism References
Bolognese CP, McGraw P: The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine:phospho-ethanolamine N-methyltransferase. Plant Physiol. 2000 Dec;124(4):1800-13.
Pubmed: 11115895
Boumann HA, de Kroon AI: The contributions of biosynthesis and acyl chain remodelling to the molecular species profile of phosphatidylcholine in yeast. Biochem Soc Trans. 2005 Nov;33(Pt 5):1146-9. doi: 10.1042/BST20051146.
Pubmed: 16246068
Carman GM, Han GS: Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim Biophys Acta. 2007 Mar;1771(3):322-30. doi: 10.1016/j.bbalip.2006.05.006. Epub 2006 May 19.
Pubmed: 16807089
de Kroon AI: Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta. 2007 Mar;1771(3):343-52. doi: 10.1016/j.bbalip.2006.07.010. Epub 2006 Aug 2.
Pubmed: 17010666
Moser R, Aktas M, Narberhaus F: Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway. Mol Microbiol. 2014 Feb;91(4):736-50. doi: 10.1111/mmi.12492. Epub 2014 Jan 7.
Pubmed: 24329598
Paltauf, F, Kohlwein, S, Henry, SA. Regulation and compartmentalization of lipid synthesis in yeast. The Molecular and Cellular Biology of the yeast Saccharomyces: Gene Expression. 1992;2:415-500.
Hjelmstad RH, Bell RM: sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Mixed micellar analysis of the CPT1 and EPT1 gene products. J Biol Chem. 1991 Mar 5;266(7):4357-65.
Pubmed: 1847919
Morash SC, McMaster CR, Hjelmstad RH, Bell RM: Studies employing Saccharomyces cerevisiae cpt1 and ept1 null mutants implicate the CPT1 gene in coordinate regulation of phospholipid biosynthesis. J Biol Chem. 1994 Nov 18;269(46):28769-76.
Pubmed: 7961831
Dowd SR, Bier ME, Patton-Vogt JL: Turnover of phosphatidylcholine in Saccharomyces cerevisiae. The role of the CDP-choline pathway. J Biol Chem. 2001 Feb 9;276(6):3756-63. doi: 10.1074/jbc.M003694200. Epub 2000 Nov 14.
Pubmed: 11078727
Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA: A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem. 1998 Jul 3;273(27):16635-8.
Pubmed: 9642212
Eriksson P, Andre L, Ansell R, Blomberg A, Adler L: Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995 Jul;17(1):95-107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x.
Pubmed: 7476212
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L: The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997 May 1;16(9):2179-87. doi: 10.1093/emboj/16.9.2179.
Pubmed: 9171333
Mannhaupt G, Vetter I, Schwarzlose C, Mitzel S, Feldmann H: Analysis of a 26 kb region on the left arm of yeast chromosome XV. Yeast. 1996 Jan;12(1):67-76. doi: 10.1002/(SICI)1097-0061(199601)12:1%3C67::AID-YEA884%3E3.0.CO;2-F.
Pubmed: 8789261
Larsson K, Ansell R, Eriksson P, Adler L: A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993 Dec;10(5):1101-11. doi: 10.1111/j.1365-2958.1993.tb00980.x.
Pubmed: 7934860
Albertyn J, Hohmann S, Thevelein JM, Prior BA: GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994 Jun;14(6):4135-44. doi: 10.1128/mcb.14.6.4135.
Pubmed: 8196651
Wang HT, Rahaim P, Robbins P, Yocum RR: Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol. 1994 Nov;176(22):7091-5. doi: 10.1128/jb.176.22.7091-7095.1994.
Pubmed: 7961476
Matsushita M, Nikawa J: Isolation and characterization of a SCT1 gene which can suppress a choline-transport mutant of Saccharomyces cerevisiae. J Biochem. 1995 Feb;117(2):447-51. doi: 10.1093/jb/117.2.447.
Pubmed: 7608137
Zheng Z, Zou J: The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem. 2001 Nov 9;276(45):41710-6. doi: 10.1074/jbc.M104749200. Epub 2001 Sep 5.
Pubmed: 11544256
Skala J, Van Dyck L, Purnelle B, Goffeau A: The sequence of an 8 kb segment on the left arm of chromosome II from Saccharomyces cerevisiae identifies five new open reading frames of unknown functions, two tRNA genes and two transposable elements. Yeast. 1992 Sep;8(9):777-85. doi: 10.1002/yea.320080911.
Pubmed: 1332308
Dujon B, Alexandraki D, Andre B, Ansorge W, Baladron V, Ballesta JP, Banrevi A, Bolle PA, Bolotin-Fukuhara M, Bossier P, Bou G, Boyer J, Bultrago MJ, Cheret G, Colleaux L, Dalgnan-Fornler B, del Rey F, Dlon C, Domdey H, Dusterhoft A, Dusterhus S, Entlan KD, Erfle H, Esteban PF, Feldmann H, Fernandes L, Robo GM, Fritz C, Fukuhara H, Gabel C, Gaillon L, Carcia-Cantalejo JM, Garcia-Ramirez JJ, Gent NE, Ghazvini M, Goffeau A, Gonzalez A, Grothues D, Guerreiro P, Hegemann J, Hewitt N, Hilger F, Hollenberg CP, Horaitis O, Indge KJ, Jacquier A, James CM, Jauniaux C, Jimenez A, Keuchel H, Kirchrath L, Kleine K, Kotter P, Legrain P, Liebl S, Louis EJ, Maia e Silva A, Marck C, Monnier AL, Mostl D, Muller S, Obermaier B, Oliver SG, Pallier C, Pascolo S, Pfeiffer F, Philippsen P, Planta RJ, Pohl FM, Pohl TM, Pohlmann R, Portetelle D, Purnelle B, Puzos V, Ramezani Rad M, Rasmussen SW, Remacha M, Revuelta JL, Richard GF, Rieger M, Rodrigues-Pousada C, Rose M, Rupp T, Santos MA, Schwager C, Sensen C, Skala J, Soares H, Sor F, Stegemann J, Tettelin H, Thierry A, Tzermia M, Urrestarazu LA, van Dyck L, Van Vliet-Reedijk JC, Valens M, Vandenbo M, Vilela C, Vissers S, von Wettstein D, Voss H, Wiemann S, Xu G, Zimmermann J, Haasemann M, Becker I, Mewes HW: Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371-8. doi: 10.1038/369371a0.
Pubmed: 8196765
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Athenstaedt K, Daum G: YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem. 2003 Jun 27;278(26):23317-23. doi: 10.1074/jbc.M302577200. Epub 2003 Apr 7.
Pubmed: 12682047
Bowman S, Churcher C, Badcock K, Brown D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B: The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90-3.
Pubmed: 9169872
Heinemeyer W, Trondle N, Albrecht G, Wolf DH: PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. Biochemistry. 1994 Oct 11;33(40):12229-37. doi: 10.1021/bi00206a028.
Pubmed: 7918444
Honigberg SM, Conicella C, Espositio RE: Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. Genetics. 1992 Apr;130(4):703-16.
Pubmed: 1582554
Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK: Global analysis of protein localization in budding yeast. Nature. 2003 Oct 16;425(6959):686-91. doi: 10.1038/nature02026.
Pubmed: 14562095
Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature. 1997 May 29;387(6632 Suppl):103-5.
Pubmed: 9169875
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings