Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Choline Biosynthesis I
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-02-21
Last Updated: 2019-09-12
Choline is a nitrogen-containing, water-soluble nutrient that is incorporated into the headgroups of membrane phospholipids such as phosphatidylcholine. Two pathways exist for choline biosynthesis whereby serine becomes choline. Both of these pathways take place in the cytosol. This is the first pathway of choline biosynthesis. First, serine decarboxylase (SDC) uses a proton and a pyridoxal 5'-phosphate cofactor to catalyze the conversion of L-serine to ethanolamine, producing carbon dioxide as a byproduct. Second, ethanolamine kinase, localized to the cell membrane (coloured dark green in the image), uses ATP to catalyze the conversion of ethanolamine to O-phosphoethanolamine. Note that this is only the probable ethanolamine kinase in Arabidopsis thaliana and requires further research to confirm its function. Steps 3, 4, and 5 are catalyzed by phosphoethanolamine N-methyltransferase (PEAMT). These three sequential N-methylation steps convert phosphoethanolamine to phosphocholine and utilize S-adenosyl-L-methionine as a methyl donor. The intermediates are as follows: O-Phosphoethanolamine, N-methylethanolamine phosphate, and N-dimethylethanolamine phosphate. Sixth, phosphoethanolamine/phosphocholine phosphatase catalyzes the synthesis of choline from phosphocholine. It requires magnesium as a cofactor.
References
Choline Biosynthesis I References
BeGora MD, Macleod MJ, McCarry BE, Summers PS, Weretilnyk EA: Identification of phosphomethylethanolamine N-methyltransferase from Arabidopsis and its role in choline and phospholipid metabolism. J Biol Chem. 2010 Sep 17;285(38):29147-55. doi: 10.1074/jbc.M110.112151. Epub 2010 Jul 22.
Pubmed: 20650897
Lin YC, Liu YC, Nakamura Y: The Choline/Ethanolamine Kinase Family in Arabidopsis: Essential Role of CEK4 in Phospholipid Biosynthesis and Embryo Development. Plant Cell. 2015 May;27(5):1497-511. doi: 10.1105/tpc.15.00207. Epub 2015 May 12.
Pubmed: 25966764
Fujimori K, Ohta D: Heavy metal induction of Arabidopsis serine decarboxylase gene expression. Biosci Biotechnol Biochem. 2003 Apr;67(4):896-8. doi: 10.1271/bbb.67.896.
Pubmed: 12784636
Kwon Y, Yu SI, Lee H, Yim JH, Zhu JK, Lee BH: Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development. Int J Mol Sci. 2012;13(3):3176-88. doi: 10.3390/ijms13033176. Epub 2012 Mar 7.
Pubmed: 22489147
Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu WI, Voelker DR, Basset G, Hanson AD: Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem. 2001 Sep 21;276(38):35523-9. doi: 10.1074/jbc.M106038200. Epub 2001 Jul 18.
Pubmed: 11461929
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003 Oct 31;302(5646):842-6. doi: 10.1126/science.1088305.
Pubmed: 14593172
Bolognese CP, McGraw P: The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine:phospho-ethanolamine N-methyltransferase. Plant Physiol. 2000 Dec;124(4):1800-13. doi: 10.1104/pp.124.4.1800.
Pubmed: 11115895
Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4,504,864 bp covered by sixty P1 and TAC clones. DNA Res. 2000 Apr 28;7(2):131-5. doi: 10.1093/dnares/7.2.131.
Pubmed: 10819329
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings