Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Abscisic Acid Glucose Ester Metabolism
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-02-22
Last Updated: 2019-09-12
Abscisic acid glucose ester metabolism is a pathway that begins in the chloroplast and enters the cytosol and endoplasmic reticulum body by which violaxanthin becomes abscisic acid glucose ester, synthesizing abscisic acid in the process. Abscisic acid glucose ester synthesis and reformation back to abscisic acid provides a mechanism for precisely controlling abscisic acid concentration (quickly removing and adding abscisic acid when required). First, neoxanthin synthase catalyzes the opening of the violaxanthin epoxide ring to form neoxanthin. Second, a yet unidentified neoxanthin isomerase is theorized to isomerize neoxanthin to 9'-cis-neoxanthin. Third, 9-cis-epoxycarotenoid dioxygenase (NCED) uses oxygen to cleave 9'-cis-neoxanthin to form xanthoxin and C25-allenic-apo-aldehyde. This enzyme requires Fe2+ as a cofactor. Next, a xanthoxin transporter is theorized to export xanthoxin from the chloroplast into the cytosol to continue abscisic acid biosynthesis, but it has yet to be discovered. Fourth, xanthoxin dehydrogenase, located in the cytosol, catalyzes the conversion of xanthoxin and NAD to abscisic aldehyde, NADH, and a proton with the help of a molybdenum cofactor (MoCo). Fifth, abscisic-aldehyde oxidase converts abscisic aldehyde, water, and oxygen into hydrogen peroxide, hydrogen ion, and abscisic acid. Sixth, abscisic acid glucosyltransferase uses UDP to convert abscisic acid into abscisic acid glucose ester. Abscisic acid glucose ester can then be converted back to abscisic acid via abscisic acid glucose ester beta-glucosidase located in the endoplasmic reticulum body (coloured dark green in the image). Consequently, it is theorized that ABA-GE transporters are required for this enzyme to access its substrates from the cytosol.
References
Abscisic Acid Glucose Ester Metabolism References
Nambara E, Marion-Poll A: Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165-85. doi: 10.1146/annurev.arplant.56.032604.144046.
Pubmed: 15862093
Finkelstein R: Abscisic Acid synthesis and response. Arabidopsis Book. 2013 Nov 1;11:e0166. doi: 10.1199/tab.0166. eCollection 2013.
Pubmed: 24273463
Okamoto M, Kushiro T, Jikumaru Y, Abrams SR, Kamiya Y, Seki M, Nambara E: ABA 9'-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry. 2011 Jun;72(8):717-22. doi: 10.1016/j.phytochem.2011.02.004. Epub 2011 Mar 15.
Pubmed: 21414645
Yamada K, Nagano AJ, Ogasawara K, Hara-Nishimura I, Nishimura M: The ER body, a new organelle in Arabidopsis thaliana, requires NAI2 for its formation and accumulates specific beta-glucosidases. Plant Signal Behav. 2009 Sep;4(9):849-52. Epub 2009 Sep 16.
Pubmed: 19847124
Bouvier F, D'harlingue A, Backhaus RA, Kumagai MH, Camara B: Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem. 2000 Nov;267(21):6346-52. doi: 10.1046/j.1432-1327.2000.01722.x.
Pubmed: 11029576
Ronen G, Carmel-Goren L, Zamir D, Hirschberg J: An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11102-7. doi: 10.1073/pnas.190177497.
Pubmed: 10995464
The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012 May 30;485(7400):635-41. doi: 10.1038/nature11119.
Pubmed: 22660326
Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A: Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 2006 Feb;45(3):309-19. doi: 10.1111/j.1365-313X.2005.02622.x.
Pubmed: 16412079
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriguez PL: The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 2002 Aug;14(8):1833-46. doi: 10.1105/tpc.002477.
Pubmed: 12172025
Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T: Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol. 2004 Apr;134(4):1697-707. doi: 10.1104/pp.103.036970. Epub 2004 Apr 2.
Pubmed: 15064376
Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T: The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12908-13. doi: 10.1073/pnas.220426197.
Pubmed: 11050171
Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T: Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004 Nov;45(11):1694-703. doi: 10.1093/pcp/pch198.
Pubmed: 15574845
Hong Z, Zhang Z, Olson JM, Verma DP: A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell. 2001 Apr;13(4):769-79. doi: 10.1105/tpc.13.4.769.
Pubmed: 11283335
Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T: Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 2000 Nov;124(3):1007-18. doi: 10.1104/pp.124.3.1007.
Pubmed: 11080278
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings