Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fatty Acid Elongation
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-02-24
Last Updated: 2019-09-12
Fatty acid elongation consists of the addition of two carbons to a acyl-[acyl-carrier protein] molecule for every turn of the cycle. The products synthesized as a result of multiple turns of the cycle are used to build fatty acid-containing compounds (e.g. phosphlipids, saturated fatty acids). This pathway occurs in the chloroplast and predicted enzymes are coloured orange in the image. Upon initial entry into the cycle, a 3-oxoacyl-[acp] is converted into a (3R)-3-hydroxyacyl-[acyl-carrier protein] by 3-oxoacyl-[acyl-carrier-protein] reductase. Second, a not yet elucidated 3-hydroxyacyl-[acyl-carrier-protein] dehydratase in Arabidopsis thaliana is theorized to catalyze the conversion of a (3R)-3-hydroxyacyl-[acyl-carrier protein] into a trans-2-enoyl-[acyl-carrier protein]. The third reaction by which a trans-2-enoyl-[acyl-carrier protein] is converted into a 2,3,4-saturated fatty acyl-[acp] using NADH can be catalyzed by either a enoyl-[acyl-carrier-protein] reductase (NADH) or a enoyl-[acyl-carrier-protein] reductase (NADPH). Both enzymes are not yet elucidated in Arabidopsis thaliana. Last, 3-oxoacyl-[acyl-carrier-protein] synthase I catalyzes the conversion of a 2,3,4-saturated fatty acyl-[acp] converted into a (longer) 3-oxoacyl-[acp] that can lengthen with more turns in the cycle.
References
Fatty Acid Elongation References
Wu GZ, Xue HW: Arabidopsis beta-ketoacyl-[acyl carrier protein] synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. Plant Cell. 2010 Nov;22(11):3726-44. doi: 10.1105/tpc.110.075564. Epub 2010 Nov 16.
Pubmed: 21081696
Slabas AR, Chase D, Nishida I, Murata N, Sidebottom C, Safford R, Sheldon PS, Kekwick RG, Hardie DG, Mackintosh RW: Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodG-gene product of the nitrogen-fixing soil bacterium Rhizobium meliloti. Biochem J. 1992 Apr 15;283 ( Pt 2):321-6. doi: 10.1042/bj2830321.
Pubmed: 1575676
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Kaneko T, Kotani H, Nakamura Y, Sato S, Asamizu E, Miyajima N, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 5. V. Sequence features of the regions of 1,381,565 bp covered by twenty one physically assigned P1 and TAC clones. DNA Res. 1998 Apr 30;5(2):131-45. doi: 10.1093/dnares/5.2.131.
Pubmed: 9679202
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003 Oct 31;302(5646):842-6. doi: 10.1126/science.1088305.
Pubmed: 14593172
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings