
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Pentose Phosphate Pathway
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-05-10
Last Updated: 2025-01-25
Pentose phosphate pathway is a metabolic pathway that takes place in cytosol in most organisms, and in plastids in plants. Pentose phosphate pathway generates pentoses, ribose 5-phosphate, NADPH and erythrose 4-phosphate. Ribose 5-phosphate is required for synthesis of nucleic acids and nucleotides. Erythrose 4-phosphate is required for synthesis of aromatic amino acids. Glycolysis is also a part of pentose phosphate pathway. The first phase of the pathway is the oxidative phase, which generates NADPH; and second phase is non-oxidative phase, which is synthesis of 5-carbon sugers (pentoses). First, glucose-6-phosphate dehydrogenase catalyzes the conversion of beta-D-glucose 6-phosphate into 6-phosphonoglucono-D-lactone, reducing NADP to NADPH in the process. Second, 6-phosphogluconolactonase catalyzes the conversion of 6-phosphonoglucono-D-lactone into 6-phospho-D-gluconate. Third, 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phospho-D-gluconate into D-ribulose 5-phosphate, reducing NADP to NADPH in the process and finishing the oxidative phase of the pathway. Next, ribulose-phosphate 3-epimerase catalyzes the interconversion of D-ribulose 5-phosphate and D-xylulose 5-phosphate, requiring a divalent metal cation as a cofactor. Ribose-5-phosphate isomerase catalyzes the interconversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Transketolase catalyzes two different reactions: glyceraldehyde-3-phosphate and either fructose-6-phosphate or sedoheptulose-7-phosphate is interconverted into xylulose 5-phosphate and either erythrose-4-phosphate or ribose-5-phosphate respectively. It requires a divalent metal cation and thiamine diphosphate as cofactors. Transaldolase catalyzes the interconversion of D-sedoheptulose 7-phosphate and D-glyceraldehyde 3-phosphate into D-erythrose 4-phosphate and beta-D-fructose 6-phosphate. Xylulose 5-phosphate/phosphate translocator preferentially transports xylulose 5-phosphate (but will also transport ribulose 5-phosphate) from the cytosol and into the chloroplast in exchange for phosphate. Xylulose 5-phosphate supplies the plastidic pentose phosphate pathway with intermediates, especially when under high demand.
References
Pentose Phosphate Pathway References
Eicks M, Maurino V, Knappe S, Flugge UI, Fischer K: The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol. 2002 Feb;128(2):512-22. doi: 10.1104/pp.010576.
Pubmed: 11842155
Wakao S, Benning C: Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis. Plant J. 2005 Jan;41(2):243-56. doi: 10.1111/j.1365-313X.2004.02293.x.
Pubmed: 15634201
Wendt UK, Hauschild R, Lange C, Pietersma M, Wenderoth I, von Schaewen A: Evidence for functional convergence of redox regulation in G6PDH isoforms of cyanobacteria and higher plants. Plant Mol Biol. 1999 Jun;40(3):487-94. doi: 10.1023/a:1006257230779.
Pubmed: 10437832
Sato S, Kotani H, Nakamura Y, Kaneko T, Asamizu E, Fukami M, Miyajima N, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Res. 1997 Jun 30;4(3):215-30. doi: 10.1093/dnares/4.3.215.
Pubmed: 9330910
Xiong Y, DeFraia C, Williams D, Zhang X, Mou Z: Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development. Plant Cell Physiol. 2009 Jul;50(7):1277-91. doi: 10.1093/pcp/pcp070. Epub 2009 May 20.
Pubmed: 19457984
Asamizu E, Sato S, Kaneko T, Nakamura Y, Kotani H, Miyajima N, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 5. VIII. Sequence features of the regions of 1,081,958 bp covered by seventeen physically assigned P1 and TAC clones. DNA Res. 1998 Dec 31;5(6):379-91. doi: 10.1093/dnares/5.6.379.
Pubmed: 10048488
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Lutterbey MC, von Schaewen A: Analysis of homo- and hetero-dimerization among the three 6-phosphogluconate dehydrogenase isoforms of Arabidopsis. Plant Signal Behav. 2016 Oct 2;11(10):e1207034. doi: 10.1080/15592324.2016.1207034.
Pubmed: 27366940
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, Feldmann KA, Flavell RB, White O, Salzberg SL: Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 2002;3(6):RESEARCH0029. doi: 10.1186/gb-2002-3-6-research0029. Epub 2002 May 30.
Pubmed: 12093376
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003 Oct 31;302(5646):842-6. doi: 10.1126/science.1088305.
Pubmed: 14593172
Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Blocker H, Perez-Alonso M, Obermaier B, Delseny M, Boutry M, Grivell LA, Mache R, Puigdomenech P, De Simone V, Choisne N, Artiguenave F, Robert C, Brottier P, Wincker P, Cattolico L, Weissenbach J, Saurin W, Quetier F, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Benes V, Wurmbach E, Drzonek H, Erfle H, Jordan N, Bangert S, Wiedelmann R, Kranz H, Voss H, Holland R, Brandt P, Nyakatura G, Vezzi A, D'Angelo M, Pallavicini A, Toppo S, Simionati B, Conrad A, Hornischer K, Kauer G, Lohnert TH, Nordsiek G, Reichelt J, Scharfe M, Schon O, Bargues M, Terol J, Climent J, Navarro P, Collado C, Perez-Perez A, Ottenwalder B, Duchemin D, Cooke R, Laudie M, Berger-Llauro C, Purnelle B, Masuy D, de Haan M, Maarse AC, Alcaraz JP, Cottet A, Casacuberta E, Monfort A, Argiriou A, flores M, Liguori R, Vitale D, Mannhaupt G, Haase D, Schoof H, Rudd S, Zaccaria P, Mewes HW, Mayer KF, Kaul S, Town CD, Koo HL, Tallon LJ, Jenkins J, Rooney T, Rizzo M, Walts A, Utterback T, Fujii CY, Shea TP, Creasy TH, Haas B, Maiti R, Wu D, Peterson J, Van Aken S, Pai G, Militscher J, Sellers P, Gill JE, Feldblyum TV, Preuss D, Lin X, Nierman WC, Salzberg SL, White O, Venter JC, Fraser CM, Kaneko T, Nakamura Y, Sato S, Kato T, Asamizu E, Sasamoto S, Kimura T, Idesawa K, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S: Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):820-2. doi: 10.1038/35048706.
Pubmed: 11130713
Tabata S, Kaneko T, Nakamura Y, Kotani H, Kato T, Asamizu E, Miyajima N, Sasamoto S, Kimura T, Hosouchi T, Kawashima K, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Naruo K, Okumura S, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Sato S, de la Bastide M, Huang E, Spiegel L, Gnoj L, O'Shaughnessy A, Preston R, Habermann K, Murray J, Johnson D, Rohlfing T, Nelson J, Stoneking T, Pepin K, Spieth J, Sekhon M, Armstrong J, Becker M, Belter E, Cordum H, Cordes M, Courtney L, Courtney W, Dante M, Du H, Edwards J, Fryman J, Haakensen B, Lamar E, Latreille P, Leonard S, Meyer R, Mulvaney E, Ozersky P, Riley A, Strowmatt C, Wagner-McPherson C, Wollam A, Yoakum M, Bell M, Dedhia N, Parnell L, Shah R, Rodriguez M, See LH, Vil D, Baker J, Kirchoff K, Toth K, King L, Bahret A, Miller B, Marra M, Martienssen R, McCombie WR, Wilson RK, Murphy G, Bancroft I, Volckaert G, Wambutt R, Dusterhoft A, Stiekema W, Pohl T, Entian KD, Terryn N, Hartley N, Bent E, Johnson S, Langham SA, McCullagh B, Robben J, Grymonprez B, Zimmermann W, Ramsperger U, Wedler H, Balke K, Wedler E, Peters S, van Staveren M, Dirkse W, Mooijman P, Lankhorst RK, Weitzenegger T, Bothe G, Rose M, Hauf J, Berneiser S, Hempel S, Feldpausch M, Lamberth S, Villarroel R, Gielen J, Ardiles W, Bents O, Lemcke K, Kolesov G, Mayer K, Rudd S, Schoof H, Schueller C, Zaccaria P, Mewes HW, Bevan M, Fransz P: Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):823-6. doi: 10.1038/35048507.
Pubmed: 11130714
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings