Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Limonene and Pinene Degradation
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-05-19
Last Updated: 2019-09-12
Both enzymes involved with the known reactions for limonene and pinene degradation in Arabidopsis thaliana are membrane-localized (e.g. endoplasmic reticulum membrane). The first enzyme, an aldehyde dehydrogenase (NAD+), catalyzes the conversion of perillyl aldehyde into perillic acid. The second enzyme, a cytochrome P450 protein, catalyzes the conversions of alpha-pinene to myrtenol and to pinocarveol, thus exhibiting both alpha-pinene dehydrogenase and alpha-pinene monooxygenase activity.
References
Limonene and Pinene Degradation References
Zondlo SC, Irish VF: CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. Plant J. 1999 Aug;19(3):259-68.
Pubmed: 10476073
Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M: Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell. 2007 Dec;13(6):843-56. doi: 10.1016/j.devcel.2007.10.001.
Pubmed: 18061566
Wang JW, Schwab R, Czech B, Mica E, Weigel D: Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell. 2008 May;20(5):1231-43. doi: 10.1105/tpc.108.058180. Epub 2008 May 20.
Pubmed: 18492871
Stiti N, Podgorska K, Bartels D: Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity. Biochim Biophys Acta. 2014 Mar;1844(3):681-93. doi: 10.1016/j.bbapap.2014.01.008. Epub 2014 Jan 23.
Pubmed: 24463048
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings