
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Mitochondrial Electron Transport Chain
Mus musculus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-01-21
Last Updated: 2019-08-16
The electron transport chain in mitochondria leads to the transport of hydrogen ions across the inner membrane of the mitochndria, and this proton gradient is eventually used in the production of ATP. Electrons travel down a chain of electron carriers in the inner mitochondrial membrane, ending with oxygen.
The outer membrane of the mitochondrion is permeable to ions and other small molecules and nothing in this pathway requires a specific transporter to enter into the intermembrane space. However, the inner membrane is only permeable to water, oxygen and carbon dioxide, and all other molecules, including protons, require transport proteins. Phosphate is able to enter the mitochondrial matrix via the glucose-6-phosphate translocase, and ADP is able to enter the matrix as ATP leaves it via the ADP/ATP translocase 1 protein.
Electrons donated by NADH can enter the electron transport chain as NADH dehydrogenase, known as complex I, facilitates their transfer to ubiquinone, also known as coenzyme Q10. As this occurs, the coenzyme Q10 becomes reduced to form ubiquinol, and protons are pumped from the intermembrane space to the matrix.
Lower energy electrons can also be donated to complex II, which includes succinate dehydrogenase and contains FAD. These electrons move from succinic acid to the FAD in the enzyme complex, and then to coenzyme Q10, which is reduced to ubiquinol. Throughout this, succinic acid from the citric acid cycle is converted to fumaric acid, which then returns to the citric acid cycle. This step, unlike the others in the electron transport chain, does not result in any protons being pumped from the matrix to the intermembrane space.
Regardless of which complex moved the electrons to coenzyme Q10, the cytochrome b-c1 complex, also known as complex III, catalyzes the movement of electrons from ubiquinol to cytochrome c, oxidizing ubiquinol to ubiquinone and reducing cytochrome c. This process also leads to the pumping of hydrogen ions into the intermembrane space.
Finally, the transfer of electrons from the reduced cytochrome c is catalyzed by cytochrome c oxidase, also known as complex IV of the electron transport chain. This reaction oxidizes cytochrome c for further electron transport, and transfers the electrons to oxygen, forming molecules of water. This reaction also allows protons to be pumped across the membrane.
The proton gradient that is built up through the electron transport chain allows protons to flow through the ATP synthase proteins in the mitochondrial inner membrane, providing the energy required to synthesize ATP from ADP.
References
Mitochondrial Electron Transport Chain References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Koza RA, Kozak UC, Brown LJ, Leiter EH, MacDonald MJ, Kozak LP: Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase. Arch Biochem Biophys. 1996 Dec 1;336(1):97-104. doi: 10.1006/abbi.1996.0536.
Pubmed: 8951039
Ishihara H, Nakazaki M, Kanegae Y, Inukai K, Asano T, Katagiri H, Yazaki Y, Kikuchi M, Miyazaki J, Saito I, Oka Y: Effect of mitochondrial and/or cytosolic glycerol 3-phosphate dehydrogenase overexpression on glucose-stimulated insulin secretion from MIN6 and HIT cells. Diabetes. 1996 Sep;45(9):1238-44. doi: 10.2337/diab.45.9.1238.
Pubmed: 8772729
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Kullberg M, Nilsson MA, Arnason U, Harley EH, Janke A: Housekeeping genes for phylogenetic analysis of eutherian relationships. Mol Biol Evol. 2006 Aug;23(8):1493-503. doi: 10.1093/molbev/msl027. Epub 2006 Jun 2.
Pubmed: 16751257
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001.
Pubmed: 21183079
Dobson DE, Groves DL, Spiegelman BM: Nucleotide sequence and hormonal regulation of mouse glycerophosphate dehydrogenase mRNA during adipocyte and muscle cell differentiation. J Biol Chem. 1987 Feb 5;262(4):1804-9.
Pubmed: 3027100
Ireland RC, Kotarski MA, Johnston LA, Stadler U, Birkenmeier E, Kozak LP: Primary structure of the mouse glycerol-3-phosphate dehydrogenase gene. J Biol Chem. 1986 Sep 5;261(25):11779-85.
Pubmed: 3755721
Phillips M, Djian P, Green H: The nucleotide sequence of three genes participating in the adipose differentiation of 3T3 cells. J Biol Chem. 1986 Aug 15;261(23):10821-7.
Pubmed: 3015943
Sabath DE, Broome HE, Prystowsky MB: Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2-induced transcript in a cloned T-helper lymphocyte. Gene. 1990 Jul 16;91(2):185-91. doi: 10.1016/0378-1119(90)90087-8.
Pubmed: 2145197
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP: Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 2009 May 5;7(5):e1000112. doi: 10.1371/journal.pbio.1000112. Epub 2009 May 26.
Pubmed: 19468303
Limbach KJ, Wu R: Characterization of a mouse somatic cytochrome c gene and three cytochrome c pseudogenes. Nucleic Acids Res. 1985 Jan 25;13(2):617-30. doi: 10.1093/nar/13.2.617.
Pubmed: 2987801
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000355
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings