Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
NF-kB Signaling Pathway
Homo sapiens
Category:
Protein Pathway
Sub-Categories:
Stress-Activated Signaling
Pathogen-Activated Signaling
Gene Regulatory
Kinase Signaling
Immunological
Cellular Response
Created: 2018-07-24
Last Updated: 2019-08-30
NF-κB can be found in almost all animal cells. NF-κB is crucial for cell growth since it can control cytokine production, DNA transcription, as well as cell survival. NF-κB can also respond to stress, free radicals, and UV irradiation. It can also respond to bacterial and viral antigens; therefore, it plays an important role in the immune response of infections. Various diseases such as cancer and immune diseases (and more) can be related to the incorrect regulation of the NF-κB complex. The activation of NF-κB involves two major signalling pathways: the canonical pathways, which responds to diverse stimuli such as ligands of various cytokine receptors, pattern-recognition receptors (PRRs), and the noncanonical (or alternative) pathway, which selectively responds to a specific group of stimuli, such as groups of ligands of a subset of TNFR superfamily members (e.g. LTβR, BAFFR, CD40 and RANK). Both pathways are important for regulating immune and inflammatory responses despite their differences in signalling mechanism.
References
NF-kB Signaling Pathway References
https://cgap.nci.nih.gov/Pathways/BioCarta/h_nfkbPathway
https://www.cellsignal.com/contents/science-cst-pathways-immunology-and-inflammation/nf-b-signaling-interactive-pathway/pathways-nfkb
Liu T, Zhang L, Joo D, Sun SC: NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2. doi: 10.1038/sigtrans.2017.23. Epub 2017 Jul 14.
Pubmed: 29158945
Ruben SM, Dillon PJ, Schreck R, Henkel T, Chen CH, Maher M, Baeuerle PA, Rosen CA: Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-kappa B. Science. 1991 Mar 22;251(5000):1490-3. doi: 10.1126/science.2006423.
Pubmed: 2006423
Deloukas P, van Loon AP: Genomic organization of the gene encoding the p65 subunit of NF-kappa B: multiple variants of the p65 protein may be generated by alternative splicing. Hum Mol Genet. 1993 Nov;2(11):1895-900. doi: 10.1093/hmg/2.11.1895.
Pubmed: 8281153
Lyle R, Valleley EM, Sharpe PT, Hewitt JE: An alternatively spliced transcript, p65 delta 2, of the gene encoding the p65 subunit of the transcription factor NF-kappa B. Gene. 1994 Jan 28;138(1-2):265-6. doi: 10.1016/0378-1119(94)90823-0.
Pubmed: 7907305
Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Le Bail O, Urban MB, Kourilsky P, Baeuerle PA, Israel A: The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell. 1990 Sep 7;62(5):1007-18. doi: 10.1016/0092-8674(90)90275-j.
Pubmed: 2203531
Bours V, Villalobos J, Burd PR, Kelly K, Siebenlist U: Cloning of a mitogen-inducible gene encoding a kappa B DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature. 1990 Nov 1;348(6296):76-80. doi: 10.1038/348076a0.
Pubmed: 2234062
Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Rothlisberger U, Lahm HW, Schlaeger EJ, van Loon AP, Scheidereit C: Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):966-70. doi: 10.1073/pnas.88.3.966.
Pubmed: 1992489
Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, Warr N, Willan J, Brauer D, Farmer C, Brooks E, Oddoux C, Riley B, Shajahan S, Camerino G, Homfray T, Crosby AH, Couper J, David A, Greenfield A, Sinclair A, Ostrer H: Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet. 2010 Dec 10;87(6):898-904. doi: 10.1016/j.ajhg.2010.11.003.
Pubmed: 21129722
Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM: The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004 Sep 16;431(7006):268-74. doi: 10.1038/nature02919.
Pubmed: 15372022
Xia Y, Wu Z, Su B, Murray B, Karin M: JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev. 1998 Nov 1;12(21):3369-81. doi: 10.1101/gad.12.21.3369.
Pubmed: 9808624
Malinin NL, Boldin MP, Kovalenko AV, Wallach D: MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature. 1997 Feb 6;385(6616):540-4. doi: 10.1038/385540a0.
Pubmed: 9020361
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Connelly MA, Marcu KB: CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol Biol Res. 1995;41(6):537-49.
Pubmed: 8777433
Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M: Identification and characterization of an IkappaB kinase. Cell. 1997 Jul 25;90(2):373-83. doi: 10.1016/s0092-8674(00)80344-x.
Pubmed: 9244310
DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997 Aug 7;388(6642):548-54. doi: 10.1038/41493.
Pubmed: 9252186
Strelow A, Kollewe C, Wesche H: Characterization of Pellino2, a substrate of IRAK1 and IRAK4. FEBS Lett. 2003 Jul 17;547(1-3):157-61. doi: 10.1016/s0014-5793(03)00697-5.
Pubmed: 12860405
Huang Y, Li T, Sane DC, Li L: IRAK1 serves as a novel regulator essential for lipopolysaccharide-induced interleukin-10 gene expression. J Biol Chem. 2004 Dec 3;279(49):51697-703. doi: 10.1074/jbc.M410369200. Epub 2004 Oct 1.
Pubmed: 15465816
Cao Z, Henzel WJ, Gao X: IRAK: a kinase associated with the interleukin-1 receptor. Science. 1996 Feb 23;271(5252):1128-31. doi: 10.1126/science.271.5252.1128.
Pubmed: 8599092
George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AV, Gay NJ, Weber AN: Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem. 2011 Jan 14;286(2):1341-53. doi: 10.1074/jbc.M110.159996. Epub 2010 Oct 21.
Pubmed: 20966070
Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM: Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011 Feb 3;470(7332):115-9. doi: 10.1038/nature09671. Epub 2010 Dec 22.
Pubmed: 21179087
Hardiman G, Rock FL, Balasubramanian S, Kastelein RA, Bazan JF: Molecular characterization and modular analysis of human MyD88. Oncogene. 1996 Dec 5;13(11):2467-75.
Pubmed: 8957090
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings