Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Phosphatidylethanolamine Biosynthesis PE(20:0/20:1(11Z))
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-02
Last Updated: 2019-09-26
Phosphatidylethanolamines (PE) are a class of phospholipids that incorporate a phosphoric acid headgroup into a diacylglycerol backbone. They are the second most abundant phospholipid in eukaryotic cell membranes, and contrary to phosphatidylcholine, it is concentrated with phosphatidylserine in the cell membrane's inner leaflet. In Arabidopsis thaliana, there exist two phosphatidylethanolamine biosynthesis pathways. The first pathway consists of mainly enzymes localized to either the cytosol or the cell membrane. Cell membrane-localized enzymes in this pathway are not drawn as such for clarity. Instead, they are indicated with a dark green colour and appear to be free floating in the cytosol. This first pathway begins with serine decarboxylase catalyzing the biosynthesis of ethanolamine from serine. It requires pyridoxal 5'-phosphate as a cofactor. Next, choline/ethanolamine kinase, localized to the cell membrane, catalyzes the conversion of ethanolamine to phosphoethanolamine. Then ethanolamine-phosphate cytidylyltransferase, localized to the mitochondria outer membrane, catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine. Last, choline/ethanolaminephosphotransferase, localized to the cell membrane, catalyzes phosphatidylethanolamine CDP-ethanolamine, respectively. The second pathway consists of mainly enzymes localized to the endoplasmic reticulum membrane (also depicted in dark green in the image. Beginning in the cytosol, glycerol-3-phosphate dehydrogenase [NAD(+)] catalyzes the interconversion of glycerone phosphate (from glycolysis) and glycerol 3-phosphate. After glycerol 3-phosphate enters the endoplasmic reticulum, glycerol-3-phosphate acyltransferase esterifies the acyl-group from acyl-CoA to the sn-1 position of glycerol-3-phosphate. Third, 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 catalyzes the conversion of lysophosphatidic acid (LPA or 1-acyl-sn-glycerol 3-phosphate) into phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate) by incorporating an acyl moiety at the 2nd position. Fourth, phosphatidate cytidylyltransferase catalyzes the conversion of a 1,2-diacyl-sn-glycerol 3-phosphate into a CDP-diacylglycerol. It requires a magnesium ion as a cofactor. Fifth, CDP-diacylglycerol--serine O-phosphatidyltransferase catalyzes the synthesis of phosphatidylserine from L-serine and a CDP-diacylglycerol. Last, phosphatidylserine decarboxylase catalyzes the formation of phosphatidylethanolamine from phosphatidylserine. It requires pyruvate as a cofactor.
References
Phosphatidylethanolamine Biosynthesis PE(20:0/20:1(11Z)) References
Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I: PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. Plant J. 2011 Aug;67(4):648-61. doi: 10.1111/j.1365-313X.2011.04624.x. Epub 2011 Jun 24.
Pubmed: 21554450
Kim HU, Li Y, Huang AH: Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell. 2005 Apr;17(4):1073-89. doi: 10.1105/tpc.104.030403. Epub 2005 Mar 16.
Pubmed: 15772283
Alatorre-Cobos F, Cruz-Ramirez A, Hayden CA, Perez-Torres CA, Chauvin AL, Ibarra-Laclette E, Alva-Cortes E, Jorgensen RA, Herrera-Estrella L: Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. J Exp Bot. 2012 Sep;63(14):5203-21. doi: 10.1093/jxb/ers180. Epub 2012 Jul 12.
Pubmed: 22791820
Mendes A, Kelly AA, van Erp H, Shaw E, Powers SJ, Kurup S, Eastmond PJ: bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase3. Plant Cell. 2013 Aug;25(8):3104-16. doi: 10.1105/tpc.113.116343. Epub 2013 Aug 30.
Pubmed: 23995083
Tasseva G, Richard L, Zachowski A: Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett. 2004 May 21;566(1-3):115-20. doi: 10.1016/j.febslet.2004.04.015.
Pubmed: 15147879
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003 Oct 31;302(5646):842-6. doi: 10.1126/science.1088305.
Pubmed: 14593172
Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC: Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761-8. doi: 10.1038/45471.
Pubmed: 10617197
Shen W, Wei Y, Dauk M, Tan Y, Taylor DC, Selvaraj G, Zou J: Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell. 2006 Feb;18(2):422-41. doi: 10.1105/tpc.105.039750. Epub 2006 Jan 13.
Pubmed: 16415206
Fujimori K, Ohta D: Heavy metal induction of Arabidopsis serine decarboxylase gene expression. Biosci Biotechnol Biochem. 2003 Apr;67(4):896-8. doi: 10.1271/bbb.67.896.
Pubmed: 12784636
Kwon Y, Yu SI, Lee H, Yim JH, Zhu JK, Lee BH: Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development. Int J Mol Sci. 2012;13(3):3176-88. doi: 10.3390/ijms13033176. Epub 2012 Mar 7.
Pubmed: 22489147
Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu WI, Voelker DR, Basset G, Hanson AD: Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem. 2001 Sep 21;276(38):35523-9. doi: 10.1074/jbc.M106038200. Epub 2001 Jul 18.
Pubmed: 11461929
Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GF: Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant. 2010 May;3(3):610-25. doi: 10.1093/mp/ssq005.
Pubmed: 20507939
Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X: Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell. 2010 Aug;22(8):2642-59. doi: 10.1105/tpc.109.071720. Epub 2010 Aug 10.
Pubmed: 20699393
Kocourkova D, Krckova Z, Pejchar P, Veselkova S, Valentova O, Wimalasekera R, Scherer GF, Martinec J: The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot. 2011 Jul;62(11):3753-63. doi: 10.1093/jxb/err039. Epub 2011 Apr 27.
Pubmed: 21525137
Fan L, Zheng S, Wang X: Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell. 1997 Dec;9(12):2183-96. doi: 10.1105/tpc.9.12.2183.
Pubmed: 9437863
Pappan K, Austin-Brown S, Chapman KD, Wang X: Substrate selectivities and lipid modulation of plant phospholipase D alpha, -beta, and -gamma. Arch Biochem Biophys. 1998 May 1;353(1):131-40. doi: 10.1006/abbi.1998.0640.
Pubmed: 9578608
Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4,504,864 bp covered by sixty P1 and TAC clones. DNA Res. 2000 Apr 28;7(2):131-5. doi: 10.1093/dnares/7.2.131.
Pubmed: 10819329
Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J: Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell. 2003 Aug;15(8):1872-87. doi: 10.1105/tpc.012427.
Pubmed: 12897259
Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Blocker H, Perez-Alonso M, Obermaier B, Delseny M, Boutry M, Grivell LA, Mache R, Puigdomenech P, De Simone V, Choisne N, Artiguenave F, Robert C, Brottier P, Wincker P, Cattolico L, Weissenbach J, Saurin W, Quetier F, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Benes V, Wurmbach E, Drzonek H, Erfle H, Jordan N, Bangert S, Wiedelmann R, Kranz H, Voss H, Holland R, Brandt P, Nyakatura G, Vezzi A, D'Angelo M, Pallavicini A, Toppo S, Simionati B, Conrad A, Hornischer K, Kauer G, Lohnert TH, Nordsiek G, Reichelt J, Scharfe M, Schon O, Bargues M, Terol J, Climent J, Navarro P, Collado C, Perez-Perez A, Ottenwalder B, Duchemin D, Cooke R, Laudie M, Berger-Llauro C, Purnelle B, Masuy D, de Haan M, Maarse AC, Alcaraz JP, Cottet A, Casacuberta E, Monfort A, Argiriou A, flores M, Liguori R, Vitale D, Mannhaupt G, Haase D, Schoof H, Rudd S, Zaccaria P, Mewes HW, Mayer KF, Kaul S, Town CD, Koo HL, Tallon LJ, Jenkins J, Rooney T, Rizzo M, Walts A, Utterback T, Fujii CY, Shea TP, Creasy TH, Haas B, Maiti R, Wu D, Peterson J, Van Aken S, Pai G, Militscher J, Sellers P, Gill JE, Feldblyum TV, Preuss D, Lin X, Nierman WC, Salzberg SL, White O, Venter JC, Fraser CM, Kaneko T, Nakamura Y, Sato S, Kato T, Asamizu E, Sasamoto S, Kimura T, Idesawa K, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S: Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):820-2. doi: 10.1038/35048706.
Pubmed: 11130713
This pathway was generated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Generated from SMP0014208
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings