Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Gluconeogenesis
Bos taurus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-08-16
Gluconeogenesis, which is essentially the reverse of glycolysis, results in the sythesis of glucose from non-carbohydrate substrates such as lactate, glycerol, and glucogenic amino acids. In animals, gluconeogenesis occurs primarily in the liver, and in the renal cortex to a lesser extent. This process occurs during periods of fasting or intense exercise. Gluconeogenesis is often associated with ketosis. Several non-carbohydrate carbon substrates can enter the gluconeogenesis pathway. One common substrate is lactic acid, formed during anaerobic respiration in skeletal muscle. Lactate may also come from red blood cells, which obtain energy solely from glycolysis as they have no membrane-bound organelles for aerobic respiration. Lactate is transported to the liver to be converted into pyruvate in the Cori cycle by lactate dehydrogenase. Pyruvate can then be used to generate glucose via gluconeogenesis. Many other compounds can also function as substrates for gluconeogenesis such as citric acid cycle intermediates (through conversion to oxaloacetate), amino acids other than lysine or leucine, and glycerol .
References
Gluconeogenesis References
Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marcais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL: A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10(4):R42. doi: 10.1186/gb-2009-10-4-r42. Epub 2009 Apr 24.
Pubmed: 19393038
Griffin LD, MacGregor GR, Muzny DM, Harter J, Cook RG, McCabe ER: Synthesis and characterization of a bovine hexokinase 1 cDNA probe by mixed oligonucleotide primed amplification of cDNA using high complexity primer mixtures. Biochem Med Metab Biol. 1989 Apr;41(2):125-31.
Pubmed: 2719857
Griffin LD, Gelb BD, Wheeler DA, Davison D, Adams V, McCabe ER: Mammalian hexokinase 1: evolutionary conservation and structure to function analysis. Genomics. 1991 Dec;11(4):1014-24.
Pubmed: 1783373
Harhay GP, Sonstegard TS, Keele JW, Heaton MP, Clawson ML, Snelling WM, Wiedmann RT, Van Tassell CP, Smith TP: Characterization of 954 bovine full-CDS cDNA sequences. BMC Genomics. 2005 Nov 23;6:166. doi: 10.1186/1471-2164-6-166.
Pubmed: 16305752
Kulbe KD, Jackson KW, Tang J: Structural evidence for a liver-specific glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun. 1975 Nov 3;67(1):35-42. doi: 10.1016/0006-291x(75)90279-x.
Pubmed: 1201027
Olah J, Tokesi N, Vincze O, Horvath I, Lehotzky A, Erdei A, Szajli E, Medzihradszky KF, Orosz F, Kovacs GG, Ovadi J: Interaction of TPPP/p25 protein with glyceraldehyde-3-phosphate dehydrogenase and their co-localization in Lewy bodies. FEBS Lett. 2006 Oct 30;580(25):5807-14. doi: 10.1016/j.febslet.2006.09.037. Epub 2006 Sep 27.
Pubmed: 17027006
Aaronson RM, Graven KK, Tucci M, McDonald RJ, Farber HW: Non-neuronal enolase is an endothelial hypoxic stress protein. J Biol Chem. 1995 Nov 17;270(46):27752-7. doi: 10.1074/jbc.270.46.27752.
Pubmed: 7499243
Agca C, Greenfield RB, Hartwell JR, Donkin SS: Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiol Genomics. 2002 Oct 29;11(2):53-63. doi: 10.1152/physiolgenomics.00108.2001.
Pubmed: 12388798
McGrane MM, Yun JS, Roesler WJ, Park EA, Wagner TE, Hanson RW: Developmental regulation and tissue-specific expression of a chimaeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic animals. J Reprod Fertil Suppl. 1990;41:17-23.
Pubmed: 2213709
Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011 Nov 11;334(6057):806-9. doi: 10.1126/science.1207861.
Pubmed: 22076378
Agca C, Bidwell CA, Donkin SS: Cloning of bovine pyruvate carboxylase and 5' untranslated region variants. Anim Biotechnol. 2004 May;15(1):47-66. doi: 10.1081/ABIO-120037897.
Pubmed: 15248600
Augustin R, Pocar P, Navarrete-Santos A, Wrenzycki C, Gandolfi F, Niemann H, Fischer B: Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol Reprod Dev. 2001 Nov;60(3):370-6. doi: 10.1002/mrd.1099.
Pubmed: 11599048
Iacobazzi V, Palmieri F, Runswick MJ, Walker JE: Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carrier. DNA Seq. 1992;3(2):79-88.
Pubmed: 1457818
Runswick MJ, Walker JE, Bisaccia F, Iacobazzi V, Palmieri F: Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relationship to other mitochondrial transport proteins. Biochemistry. 1990 Dec 18;29(50):11033-40. doi: 10.1021/bi00502a004.
Pubmed: 2271695
Carroll J, Fearnley IM, Walker JE: Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16170-5. doi: 10.1073/pnas.0607719103. Epub 2006 Oct 23.
Pubmed: 17060615
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000128
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings